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EXECUTIVE SUMMARY 

Despite the recent economic downturn, forecasts continue to predict that Intermodal Marine 
Container Terminals (IMCTs) will experience growth in container volumes. The growth in container 
volumes is expected to result in substantial increases in congestion for both seaside and landside 
terminal operations. IMCTs are under pressure to come up with strategies to accommodate the 
increasing demand. One of the major factors contributing to the congestion problem is that terminal 
gates are open during certain hours of the day. Consequently, trucks are forced to pick-up and deliver 
containers during specific hours of the day, resulting in high demand over these periods. This 
phenomenon has led to inefficient gate operations that can spill traffic over to the surrounding 
roadway network and cause safety and congestion problems.  

The problem of congestion may also extend to the terminal yards where high demand peaks 
for service on the landside coupled with capacity issues can degrade reliability and performance of the 
terminal. In addition to these issues, environmental effects stemming from idling trucks has further 
emerged as a serious problem, as truck emissions have been linked to negative health conditions. 
Different solutions have been proposed to reduce the amount of air pollution from drayage operations 
including new technologies, operational strategies, and financial mechanisms. Due to the limited and 
very expensive right of way in the area surrounding IMCTs, applying low cost and quickly 
implementable approaches to address mobility constraints at IMCTs becomes more viable than 
physical capacity expansions.  

Different operational strategies have been suggested (e.g. gate appointment systems, extended 
hours of operations for terminal gates, and advanced technologies for gates and terminals) to relieve 
the effects of congestion and help improve air quality. The impact of gate strategies (either at the 
tactical or operational level) on drayage operation efficiency is not very well understood, and is an 
area where researchers and practitioners have become increasingly involved. A number of researchers 
have attempted to evaluate the effects of different gate strategies either through simulation modeling 
or through before-and-after case studies of terminals which have implemented gate strategies.  

This primary objective of this research is to present the development of a traffic simulation 
model capable of measuring the impact that gate strategies will have on the levels of congestion at 
IMCT terminal gates. The traffic model was used to quantify travel time, delay, and emission levels 
within the terminals and on the roadway network in the vicinity of the IMCTs before and after gate 
strategies have been implemented. To our knowledge this is was the first attempt in the published 
literature to capture delays and emission levels at the gates of terminals using a traffic simulation 
model. These delays contribute to the inefficiency of drayage operations within IMCTs, and 
knowledge as to how various gate strategies affect efficiencies could prove valuable for future 
planning of IMCTs. Based on results from a case study, it was concluded that the majority of delays 
experienced by drayage trucks occurs at the terminal gates and that omission of terminal gates should 
be discouraged as it can lead to a 70% underestimation of the delay.  Results from the case study 
further indicate that the most effective gate strategy for reducing congestion at terminal gates as well 
as within the roadway network (as well as emissions) was extending the terminal gate hours to divert 
demand to off-peak hours.  

Recommendations for gate strategy implementation are problematic, as each terminal has 
unique characteristics that will influence the effectiveness of gate strategies. This research does show 
that appointment systems should be implemented with caution, especially when a limited number of 
lanes are available. Testing an appointment system with a simulation will let the terminal operators 
determine both the number of lanes that should be converted to appointment lanes and the percentage 
of demand that should be making appointments to utilize those lanes most effectively. Extending the 
gate hours proved to be an effective method of increasing efficiency, especially as the demand for the 
terminals was increased.   
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1. INTRODUCTION 

1.1 Problem definition 

Increasing reliance on global trade has made Intermodal Marine Container Terminals 
(IMCTs) vital links in our transportation and economic systems. Container volumes at U.S. 
IMCTs have nearly tripled over the last twenty years (1) and forecasts predict that demand will 
double sometime in the next ten to fifteen years (2). Rising container volumes have forced many 
ports to take action or face the risk of exceeding their capacity in the near future. Whenever 
possible, IMCTs have turned to physical expansion to increase their capacity and accommodate 
future demand. However, most IMCTs are located in densely populated urban areas, making 
physical expansion difficult or impossible. When physical expansion is not an option, planners 
and engineers need to address increases in demand with corresponding increases in operational 
efficiency or face the possibility of crippling congestion. 

In addition to capacity concerns, terminal operators also need to address increases in 
emissions that occur as a result of increases in demand and congestion. IMCTs have begun to 
address this issue by introducing programs such as cold-ironing and electrification which are 
aimed at reducing emissions of landside and seaside operations. Most current landside operations 
produce diesel engine exhaust, which is known to contain a number of carcinogens and is 
associated with elevated levels of asthma attacks, emergency room visits, hospitalizations, heart 
attacks, strokes and untimely deaths (3).  

Although the need to increase IMCT efficiency extends to both landside and seaside 
operations, the focus of this research will be on a specific set of landside operations; drayage 
movements. Drayage is defined as “the movement of containers between a port terminal and an 
inland distribution point or rail terminal” (4). Drayage operators are typically paid by the move, 
which creates an incentive for drivers to make as many moves during the day as possible, which 
causes demand to peak during certain hours at terminal gates. These peaks are concentrated in the 
hours prior to the opening of terminal gates, as drayage operators attempt to enter the terminal as 
early as possible, and evening, as drayage operators try to make their last movement before the 
gates close. Trucks that arrive prior to the gates open often continue to idle, which increases the 
emissions generated by IMCT landside operations.  

Peaking is exacerbated at terminals where an imbalance exists between the operating 
hours of terminal gates (typical hours are weekdays from 6:00 AM to 5:00 PM) and seaside 
operations (typically carried throughout the day). This imbalance creates congestion at both the 
beginning of the day and after a weekend period, as demand for drayage movements continues to 
build over these periods.  

Even if demand peaks and operational imbalances did not occur, IMCT terminal gates 
would continue to be a source of congestion due to in-gate processing delays. A typical in-gate 
process includes identity verification of both the drayage operator and company, verification of 
the availability of the container that the drayage operator intends to pick up, equipment 
inspection, and dispatching yard equipment needed to ready the container. These delays vary 
according to transaction type, drayage operator experience and degree of automation available at 
the terminal gate. A typical delay at a terminal entrance gate is 4 to 5 minutes (4). Inbound gate 
delay is reduced for trucks performing simpler transactions (i.e. trucks arriving bobtail or with a 
chassis, trucks with appointments, etc.) Transactions at exit gates are typically simpler than 
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transactions at entrance gates, therefore delays at exit gates are typically smaller than those of 
inbound gates (4).  

Various strategies have been implemented by IMCTs to decrease delays at terminal gates. 
These strategies include use of automated technologies to improve operational efficiencies (5), 
extending operational hours of terminal gates, and creating appointment systems for drayage 
movements. Extended gate hours are designed to distribute peak hour demand to off-peak hours 
and can be combined with financial incentives which help to offset the added cost of operating 
terminal gates over longer time periods and to encourage drayage operators to utilize off-peak 
hours. The amount of demand which is shifted often depends on the length of the extension (i.e. 
gates that already have longer operational periods experience a smaller shift than those with 
shorter operational periods).  

Another strategy IMCTs implement to increase terminal gate efficiency is appointment 
systems. Appointment systems are often accompanied by dedicated lanes whose purpose to 
minimize delays for trucks with appointments, thereby encouraging more drayage operators to 
make and keep appointments. Effective appointment systems also allow IMCT operators a 
measure of control over drayage truck arrivals, as they can specify the number of transactions that 
will occur on appointment lanes (6). This measure of control is limited by the variability of 
drayage transactions, as time slots often range from one to several hours. The effectiveness of 
appointment systems relies on proper planning by terminal operators and by the drayage 
operators’ ability to keep their appointments (7). The latter can be affected by factors out of the 
drayage operators’ control (such as traffic congestion on route to the port or delay at its origin) 
making truck appointment systems less attractive. 

1.2 Research objectives 

The goal of this research is to develop a methodology which can be used to create a 
dynamic traffic simulation model that will measure congestion and emissions levels at IMCT 
terminals before and after the application of gate strategies. To demonstrate the proposed 
methodology a case study will be developed where two gate strategies are implemented: a) an 
appointment system, and b) extended hours of gate operations. The Port of Newark/Elizabeth 
(PNE) was selected as the test-bed for this research due to data availability (Dougherty (8) and 
Spasovic et al. (9)) and because the port has high levels of demand.  

The scenarios that were developed for the PNE included: a) a scenario that represented 
the current patterns of operation (CPO), b) an appointment scenario, c) an extended gate hour 
scenario, and d) a flat demand scenario (the flat demand scenario evenly distributed truck demand 
over a 24-hour period and was used as a best-case scenario). Gate strategy scenarios were 
compared to the CPO scenario to measure any improvements that resulted from their 
implementation. The flat demand scenario was used to determine what the best-case scenario 
would look like for future demand levels. We note that to capture the effectiveness of these two 
gate strategies, the proposed methodology and model should capture the complex logic behind 
daily IMCT drayage movements as accurately as possible. In this research a significant amount of 
effort focused in achieving the latter objective utilizing state of the practice software and 
innovative modeling techniques. 

The remainder of this report is organized as follows: the next section contains a literature 
review. Section 3 describes the physical characteristics of both the PNE and the simulation and 
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explains the methodology used to construct the traffic model. Section 4 presents the results and 
Section 5 presents the conclusions. 

2. LITERATURE REVIEW 

The importance of drayage operations and their effect on emissions levels at IMCTs is 
reflected by an increase in the amount of research. This literature review will focus on two types 
of research: before-and-after case studies at IMCTs that have implemented gate strategies and 
simulations of IMCTs which include logic for gate strategy implementation.  

2.1 Before-and-after case studies of gate strategies 

In 2005, a program extending terminal gate operating hours at the Ports of Los Angeles 
and Long Beach (PLALB) began in response to legislation. This legislation called for terminal 
operators to take action to reduce congestion and emissions levels of the PLALB. The extended 
hour program assessed a fee to drayage transactions made during peak hours to encourage a 
demand shift to off-peak hours and also to offset additional costs of operating terminal gates over 
an extended time period. The effectiveness of the extended gate hour program was assessed by 
Giuliano et al. (10). The authors concluded that extended hours at the PLALB shifted 20% of 
drayage movements from peak hours to off-peak hours.  

In a separate study of the extended gate hour program at the PLALB, Fairbank, Maslin, 
Maullin, and Associates (11) interviewed drayage operators before and after implementation to 
determine the perceived benefit of effected parties at the IMCT. The survey stated that drayage 
operators felt that extended operating hours of terminal gates had a positive impact on the overall 
efficiency of drayage operations at the PLALB.  

Extended gate hours were briefly introduced on a trial basis at two of the three terminals 
at the PNE. A study conducted by Spasovic et al. (9) assessed the effectiveness of extended 
operational hours at the PNE’s terminal gates. The authors concluded that neither experiment was 
considered a success, as only a small percentage of drayage operators utilized off-peak hours. The 
authors compared extended hours at the PNE to the program implemented at the PLALB and 
noted that physical differences in shipper sizes and differences in political structure between the 
ports represented a challenge for effectively implementing an extended hour program at the PNE. 

A gate appointment system was implemented along with the extended hour program at 
the PLALB in 2005. The appointment system was evaluated in three separate studies by Giuliano 
et al. (12; 13; 14). In each study, the authors cited an inability of terminals to enforce 
appointments and a lack of willingness on the part of drayage operators to participate in the 
program as reasons for a lack of success of appointment systems. Lack of drayage operator 
participation was due in part to failure to dedicate lanes solely to trucks with appointments. The 
lack of dedicated appointment lanes led to the system having a limited impact on turn times. 
Other reasons given for lack of success were that the appointment system was imposed on the 
terminals from the outside, that other operational changes implemented alongside the 
appointment system were more effective (i.e. extended hours) and that regulation was imposed on 
terminal operators instead of truckers.  

A study conducted by the U.S. Environmental Protection Agency (15) found that a 
terminal gate appointment system implemented at the Port of New Orleans improved traffic flow 
through the IMCT, increased terminal throughput and improved productivity for trucking 
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companies and terminal operators. Morais and Lord (7) conducted a study for the Canadian 
government which cautioned that an appointment system implemented without support from port 
operators and truck drivers would have little to no effect on reducing gate congestion. The authors 
believed that gate appointment systems have the potential to reduce congestion when properly 
implemented and should be considered as a means for reducing future drayage congestion at 
IMCTs. 

Overall, case studies of gate strategy implementation have led to mixed results. Some 
strategies have yielded positive results after implementation, while others have not. Each terminal 
has unique characteristics that affect the outcome of gate strategy success. Establishing a 
methodology for simulating gate strategy implementation would provide an opportunity for 
terminal operators to assess various strategies prior to implementation.  

2.2 Simulations of IMCTs 

Namboothiri and Erera (16) used an integer programming-based heuristic to model an 
IMCT and determine pickup and delivery sequences for daily drayage operations with minimized 
transportation costs. The authors found that it is critical for terminal operators to provide drayage 
firms enough capacity when implementing gate appointment systems (vehicle productivity 
increased by 10–24% when capacity increased by 30%), that drayage operators must make good 
appointment selections to maintain high levels of customer service (the authors found that 
differences between the best and worst selections for capacity distributions resulted in a decrease 
in the number of customers served by up to 4%) and that duration of appointment windows may 
affect the ability of drayage firms to provide high levels of service. A multi-queuing model was 
used by Guan and Liu (17) to quantify gate congestion for inbound trucks, evaluate truck waiting 
cost and explore alternatives for gate system optimization. The authors looked at optimizing both 
the supply side and demand side of gate operations. The authors noted the following problems 
associated with optimization of the supply side: lack of available land, yard congestion due to 
lack of handling capacity, under-utilization of gate systems during non-peak periods and a need 
for flexibility in gate personnel due to variations in truck arrival rates. The authors found demand 
side utilization to be more responsive and to provide more effective control over resource 
allocation, congestion and system performance. 

Chen et al. (18) presented a framework in which vessel-dependent time window 
optimization was proposed as a measure of gate congestion reduction. Two time window 
strategies (related to the beginning and end of a time period where export containers arriving by a 
vessel could be picked up) were compared. The first was a fixed end-point time window and the 
second was a variable end-point time window. An optimization model was formulated and both 
strategies were compared to a time window assignment based on a greedy algorithm. The latter 
attempted to assign the longest time windows possible, using yard capacity as the constraint. 
Results showed both time window strategies compared favorably to results obtained by the 
greedy algorithm and that a fixed end-point time window strategy provided similar results to the 
variable end-point time windows and needed less CPU time. 

Huynh and Walton (19) developed a simulation model of the Barbours Cut Terminal in 
Houston using Arena simulation software. The goal of the simulation was to develop a model that 
would capture the relationship between yard crane availability and terminal efficiency. The 
simulation was also used to assess the effect that a terminal gate appointment system would have 
on terminal efficiency. The simulation began inside the terminal (at a point after the drayage 
trucks had passed through the entrance gates). Logic was included to simulate container 
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movements that occurred in the terminal yard. Additional logic was included for delays that 
occurred at terminal exit gates. The appointment system in the authors’ model was used to limit 
the number of arrivals over a specified time period. Due to limitations of Arena software, the 
model contained no interaction with the IMCT roadway network. The authors concluded that the 
simulation could be used to determine the number of yard cranes needed to achieve a desired 
truck turn time at an IMCT terminal. 

Fischer et al. (20) created a port travel demand model that compared a combination of 
different strategies including; extended gate hours, a virtual container yard, a shuttle train, 
additional on-dock trains and a near-dock container storage yard. QuickTrip was used to create 
the model. Each scenario was estimated by adjusting input to reflect assumed shifts in demand 
patterns caused by each scenario’s implementation. For extended gate hours, percentage shifts in 
the overall demand cycle were adjusted to reflect different weekend/weekday shifts. The hourly 
distribution of drayage traffic patterns was kept the same. The results of this study measured 
changes in truck trips and did not attempt to capture the details of the IMCT itself, nor did it 
attempt to use delays within the terminal as part of the analysis.  

Moini (21) created a simulation model of a generic marine container using ARENA 
software. In the simulation, terminal entrance gates were modeled as two-tier systems. The first 
gate was used to simulate delays for checking driver’s paperwork. Logic was included for 
“trouble” tickets, where trucks were sent to a customer service area and experienced longer 
delays. The second set of gates was designed to simulate truck and container inspections and also 
to assign interchange areas for loading/unloading containers in the terminal yard. Service rates at 
gates were assumed to follow exponential and Poisson distributions. The simulation also modeled 
transactions occurring within the terminal yard and on the dockside. Delays at exit gates were 
modeled using the exponential distribution, which is assumed to allow for the occasional 
mishandling of paperwork or poor physical condition of containers upon exiting (both of which 
were assumed to cause increases in delay at exit gates).  

To simulate an appointment system, Moini  (21) assumed that dedicated lanes would be 
provided for trucks with appointments and that service in those lanes would be reduced, as 
transactions would be less complicated and would have less variation. Appointment gates were 
assigned delays with a flat rate of 1-2 minutes. All travel times between gates and yard operations 
were estimated. The simulation was used to measure truck turn times, queue lengths and delays at 
specified locations within the simulation.  

A simulation of the Pasir Panjang Terminal Extension in Singapore was created by Lee et 
al. (22) using Paramics simulation software. The goal of the simulation was to determine areas 
within the terminal that were most likely to experience congestion due to future growth and also 
to evaluate the optimal size of a truck fleet that would be used to conduct container moves within 
the terminal yard. The authors used three truck types to create the simulation: trucks without a 
container, trucks with a 20 foot container and trucks with a 40 foot container. Different sets of 
logic were developed for each truck (i.e. a truck without a container would have one loaded once 
it reached its destination, a truck with a container would be unloaded upon reaching its 
destination, etc.). The model only considered activity within the terminal yard and did not include 
any logic for terminal gates. Once a truck reached its destination within the terminal yard it was 
destroyed, leaving the plug-in to control the queues (virtually). This resulted in a lack of physical 
queues within the simulation. Upon completion of the loading and unloading processes, a truck 
similar to the one that was destroyed was released onto the terminal roadway network where it 
would exit the simulation. All vehicle movements within the simulation were controlled using 
fixed routes.  
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Dougherty (8) created a dynamic traffic assignment of the PNE using Vissim software. 
The simulation evaluated the effect that gate strategies would have on the PNE’s roadway 
network.  Gate strategies were simulated using the following shifts in demand; a 30% shift in 
demand to off-peak weekday hours, a 20% shift in demand to off-peak weekday hours, a 20% 
shift in demand to weekends and a 10% shift in demand to weekends. All vehicles destined to or 
originating from the terminals were treated as trucks, with no distinction between differing types 
of drayage operations. 40% of all traffic routed to Maher terminals was given an additional stop 
at the Maher chassis depot. Travel times and delays that were included in this model were 
recorded from the time a truck was created (at the origin zone) to the time it was destroyed (at the 
destination zone). No delay was applied to trucks entering terminals, therefore transactions at 
terminal gates were not captured by this model.  

Marine container terminal simulations have been carried out using a variety of software 
platforms and techniques. Some simulations are meant to represent only the actions occurring 
within the terminal yard, others are meant to capture movements within the port’s roadway 
network. Most simulations have represented gate strategies as shifts in demand and have not 
combined those demand shifts with actual gate operations. This method fails to capture the affect 
that gate strategies will have on actual gate operations. Previous simulations also failed to include 
movements between chassis depots and terminals and interactions between entrance gate queues 
and IMCT roadways. The methodology outlined in Section 3 explains how this work captured all 
of these movements using a Paramics simulation. 

3. METHODOLOGY 

This section describes the process used to build the traffic simulation model for the PNE. 
The section includes the process that was undertaken to select a software platform, a physical 
description of the PNE, the development of vehicle types, zones, and demand, a physical 
description of the simulation for each gate strategy, and the approach used to model and calculate 
emissions.  

3.1 Software selection 

Several off-the-shelf dynamic traffic simulation software platforms are available 
including, but not limited to, CORSIM, SimTraffic, AIMSUN, VISSIM, and Paramics. All of 
these platforms are capable of creating microscopic traffic simulations that can perform project-
level analysis. A comparison of traffic simulations conducted by Ratrout and Rahman (23) 
reviewed various platforms based on a variety of criteria (i.e. ability to simulate signaled 
intersections, congestion, intelligent transportation systems, etc.). Most evaluations concluded 
that the simulation platforms performed relatively equally. Quadstone Paramics (24) was selected 
for this research due to its availability and its ability to model emissions using the Monitor plug-
in. 

  The diversity of Paramics software allowed for the development of a simulation that 
included logic which simulated drayage movements within the PNE. Paramics also allowed us to 
measure delays experienced on terminal roadways and at terminal gates, measure travel times 
throughout the PNE, and to measure emission levels for each scenario. The data from Paramics 
could be assessed hourly and over the entire 24-hour period.  
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3.2 Physical description of the PNE 

The PNE is located east of Newark Liberty International Airport and is bordered by I-95 
on the west and I-78 to the north. Container ships enter the port through Newark Bay, located east 
of the port. There are three main access roads that service the PNE. Vehicles entering from the 
south use North Avenue. At the north end of the PNE, vehicles can enter from either Port Street 
or Doremus Avenue. Port Street provides direct access to both I-95 and I-78, therefore a majority 
of vehicles entering from the north use this entrance. The PNE contains three container terminals; 
APM, Maher, and the Port Newark Container Terminal (PNCT). Each terminal has a chassis 
depot where drayage trucks can pick up or drop off chassis equipment. The APM chassis depot is 
located within the terminal. Maher and PNCTs both have off-site chassis depots. The distance 
between the entrance to the Maher chassis depot and the entrance to the Maher terminal is 
approximately 1.6 miles, due to the circuitous route of travel that must be taken between the two.  
Trucks traveling to the chassis depot must pass through four signalized intersections to reach the 
terminal. The PNCT chassis depot is located three miles from the terminal entrance and trucks 
traveling between the two must pass through seven signalized intersection. Capturing trips to and 
from the external chassis depots was considered crucial because generated extra trips for trucks 
and added delay to drayage transactions. A satellite view of the PNE highlighting the physical 
location of areas crucial to the simulation is shown in Figure 1.  

3.3 Physical attributes of the Paramics simulation 

Developing a Paramics model required establishing vehicle types, creating zones 
origin/destination zones, and re-creating the roadway network of the PNE. The following section 
describes the physical attributes models that represented the CPO, extended hour and 
appointment scenarios. 

3.3.1 Vehicle types 

To accurately measure changes that occur due to the application of terminal gate 
strategies, it was important to develop a detailed set of drayage vehicles. Accurate vehicle lengths 
were necessary to represent queues at the terminal gates. Different vehicle types were needed to 
model movements between the terminals and the chassis depots as well as between non-terminal 
zones within the simulation.  Movements between the terminals and the chassis depots were 
considered vital, as these movements represented a significant percentage of the total drayage 
movements within the PNE. Three major categories of vehicles were used to represent the typical 
traffic stream at the PNE:  

a) passenger cars that would originate from or be destined to “other” zones, 
b) trucks that would originate from or be destined to “other” zones, and  
c) trucks destined to the IMCTs.  

 
For passenger cars, default attributes provided by Paramics were used to represent 

physical characteristics of the vehicles. Two vehicle types were used to represent trucks destined 
to “other” zones within the PNE. Both vehicles were given the default operational attributes of a 
Large Goods Vehicle (LGV) but were given different lengths so that queues at signalized 
intersections within the PNE could be more accurately represented. The first vehicle type was 
given a length of 20 ft. and the second was given a total length of 66 ft. (which was divided into a 
13 ft. cab and a 53 ft. trailer). The distribution of “other” trucks within the model was such that 
85% were represented by vehicles with a length of 20 ft. and the remaining 15% by vehicles with 
a 66 ft. length. 
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Drayage trucks were represented by three vehicle types; trucks hauling a container (from 
now on referred to as container trucks), trucks hauling a bare chassis (from now on referred to as 
chassis trucks), and bobtail trucks. Operational attributes for these vehicles were defined using 
default characteristics of an LGV.  

Two types of vehicles were used to represent container trucks. The first represented a 
truck hauling a 40 ft. container and the second represented a truck hauling a 20 ft. container. The 
cab of each container truck was given a length of 13 ft. and the trailers were assumed to be the 
same as the length of the container. Therefore, 40 ft. container trucks had a combined length of 53 
ft. and 20 ft.  container trucks had a combined length of 33 ft. Simulating different lengths of 
container trucks was considered to accurately represent queue lengths at terminal gates. The 
proportion of 40 ft. container trucks to 20 ft. container trucks in the simulation was 80% to 20%. 
This distribution was determined from a limited set of observations obtained from satellite 
images.  

Chassis trucks consisted of a 13 ft. cab hauling a 40 ft. trailer. Bobtail trucks were single 
unit vehicles assigned a length of 13 ft. Trucks with an appointment (from now on referred to as 
appointment trucks) were given the same physical characteristics and distributions as non-
appointment trucks. 
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3.3.2 Origin/destination zone development  

Paramics simulation software allows the user to create two different zone types, vehicle 
sinks and strategic waypoints. Vehicle sinks are zones which represent either an origin or a 
destination within the simulation from which vehicles are either released into or removed. The 
second type of zone is a strategic waypoint zone, which must be used in combination with vehicle 
sinks. Vehicles can travel through any number of assigned strategic waypoints before reaching 
their destination but must have origins and destinations at vehicle sinks. The need to complete a 
route between an origin and a destination prevents strategic waypoint zones from being placed on 
dead end streets. Due to this fact, terminals were modeled as circular routes through which travel 
time is meant to represent delay due to yard operations for drayage trucks.  

The use of strategic waypoint zones in a simulation requires the development of a set of 
rules to govern vehicle routes. These routes were used in the simulation of the PNE to direct 
movements of drayage trucks. Routes within the simulation varied according to the type of 
movement needed to complete drayage transactions (specified by vehicle type). For example, 
trucks entering the simulation bobtail or with a chassis and destined to either Maher or PNCTs 
(i.e. terminals with external chassis depots) were routed to both the terminal and the chassis depot 
prior to exiting the simulation. The use of strategic waypoint zones ensured that drayage trucks 
could be tracked as they moved throughout the terminals. Strategic waypoint zones allowed trip 
times to be recorded from the time a truck was released into the simulation (at the entrances of the 
PNE) until the time it was removed (at an exit of the PNE). This method also provided a more 
accurate representation of delays, travel times and emissions occurring within the PNE and within 
each terminal.  

A total of 39 zones were used to represent origins and destinations within the PNE. To 
better model the complex traffic movements within PNE, these zones were separated into three 
sets:  

a) zones representing entrances/exits to the PNE (i.e. North Avenue, Port Street, and 
Doremus Avenue) 

b) zones representing non-terminal origin/destinations 
c) zones representing terminals and chassis depots.  

 
Entrances to the PNE were simulated using 18 vehicle sinks (6 zones per entrance). The 

North Avenue entrance zone configuration is shown in Figure 2. Multiple zones were used to 
simulate PNE entrances so that traffic assignments to each terminal could be controlled. For 
example, if a truck was destined to the APM terminal and entered via North Avenue, it was 
released at Zone 001. If that same truck was exiting the simulation after completing its drayage 
transactions at the APM terminal, it was removed from the simulation once it arrived at Zone 004. 
Similarly, Zones 028 and 030 were sources for vehicles entering via North Avenue and destined 
for either the Maher or PNCTs, respectively. Zones 029 and 031 were termini for vehicles exiting 
via North Avenue from either the Maher or PNCTs. Both Port Street and Doremus Avenue were 
represented by similar zone configurations, each having sources and sinks dedicated to 
movements from individual terminals. The inner zones of the configuration were also used as 
origins and destinations for all non-terminal traffic within the simulation.  
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Table 1 shows the relationship between strategic waypoint rules and the PNE entrances 
and exits. The routes defined origin-destination (OD) relationships between port entrances and 
terminals. The APM terminal was governed by fewer rules than the other terminals as its internal 
chassis depot did not require a separate set of rules for chassis and bobtail trucks.  

Rules 10-27 governed routes for trucks destined to the Maher terminal and chassis depot 
are shown in Table 2. 

TABLE 2 Maher Strategic Waypoint Routing Rules  

Entrance/Exit North Port Doremus 
North 10 11 12 13 14 15 
Port 16 17 18 19 20 21 

Doremus 22 23 24 25 26 27 
 

The even-numbered rules shown in Table 2 were routes for container trucks destined to 
the Maher terminal. These routes specified which entrance a container truck would be released 
from and which exit a container truck would travel to after completing its drayage transaction at 
the terminal. Odd-numbered rules represented routes for chassis and bobtail trucks. Separate 
routes were needed for these truck types as transactions at chassis depots were combined with 
terminal transactions. It was assumed that trucks would enter and exit the terminal in such a way 
as to minimize travel distance within the PNE, therefore routes terminating at North Avenue 
(Rules 11, 17, and 23) were defined so that trucks traveled to the terminal before proceeding to 
the chassis depot. For trucks originating at North Avenue, the order in which trucks visited the 
chassis depot and the terminal were reversed. For the remaining route combinations, the order in 
which vehicles visited the terminal and chassis depot did not affect travel distance, therefore 
order of assignment was random. 

Strategic waypoint rules which defined routes for trucks destined to the PNCT (rules 28-
45) used the same logic applied at the Maher terminal and chassis depot combinations, due a 
similar proximity to PNE entrances for both the terminal and chassis depot. Table 3 displays the 
strategic waypoint rules used to define truck interactions with the PNCT.  

TABLE 3 PNCT Strategic Waypoint Routing Rules 

Entrance/Exit North Port Doremus 
North 28 29 30 31 32 33 
Port 34 35 36 37 38 39 

Doremus 40 41 42 43 44 45 
 
Waypoint routing rules were a critical part of the simulation, used to add logic which 

represented complex drayage movements between the terminals and the chassis depots. 
Movements between terminals and chassis depots represent a significant portion of demand, 
therefore the inclusion of these movements was essential to assess the impact that gate strategies 
would have on congestion and emissions within the PNE.  

3.3.3 Base case development 

On top of creating logic for vehicle movements, a simulation requires a physical 
representation of the area. The geometric data used to create the physical representation of the 
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chassis depot were simulated through the application of a 5 mph speed limit. All gate delays for 
the PNCT occurred at the entrance gates to the terminals.  

Speed limits on the PNE roadway network were obtained from the 2010 Port of New 
York and New Jersey Port Guide (25). The guide showed that primary roads within the PNE had 
speed limits of 40 mph and that secondary roads had speed limits of 30 mph. Links used to 
simulate truck movements within terminal yards and chassis depots were given speed limits of 5 
mph (the lowest value allowable using Paramics) to approximate delays due to transactions 
occurring within terminal yards.  

A total of 77 intersections were used to model the PNE, 10 of which were signalized. To 
determine timings at signalized intersections, a Synchro Studio 7 (26) simulation was created 
using known turn count data (8). Synchro has an optimization feature which determines the signal 
timings that yield higher levels of service over a given range. Optimized timings from the 
Synchro simulation were used as input for signalized intersections in the Paramics model and 
were held constant for each scenario.  

The physical and behavioral aspects used to create the simulation of the CPO were not 
changed in the extended hour scenario. The only changes made to create an extended gate hour 
scenario occurred in the OD and will be described in Section 3.5.2. However, creating 
appointment scenarios required changes to both the OD and the physical and behavioral 
attributes. These changes are described in the following section. 

3.3.4 Creation of appointment scenarios 

The most important physical adjustment needed to create the appointment scenarios was 
determining the number of lanes at each terminal that would be used as appointment lanes (lanes 
that could only be accessed by appointment trucks).  For each appointment scenario, 30% of the 
lanes at each terminal entrance and exit gate were converted to appointment lanes. The different 
scenarios represented changes in the proportion of appointment to non-appointment trucks in the 
OD matrix (this is described in detail in Section 3.5.3). The physical changes made to each of the 
terminals and chassis depots are described in the remainder of this section. Figure 20 shows the 
changes made to the APM terminal. 

The changes in lane restrictions made to accommodate appointment trucks can be seen in 
Figure 20. At the Entrance Approach, lane 2 was converted from a container/chassis truck lane to 
an appointment lane. At the Entrance Gate & Queuing Area, five of the fifteen lanes were 
converted to appointment lanes. The restriction on lane 2 was changed from bobtail only to 
bobtail and chassis appointment trucks. The restriction on lane 3 was changed from container and 
chassis trucks to bobtail and chassis appointment trucks. Lanes 4, 5, and 6 were changed from 
container and chassis only to container appointment trucks. The remaining lanes at the Entrance 
Gate & Queuing Area were restricted to container and chassis trucks. The Exit Gate & Approach 
had the same proportion of lane restrictions as the Entrance Gate & Approach in the appointment 
scenarios. A change in lane restrictions was made at the Chassis Depot Separation Area to include 
bobtail appointment trucks. 
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Entrance gates that serviced chassis trucks (or combinations which included chassis 
trucks) were given delays with a range between 20 and 70 seconds, which approximated a normal 
distribution with a mean delay of 2.25 minutes. The reduction in delay for this vehicle type was 
based on the assumption that inspection times for vehicles without containers would be reduced. 
For chassis trucks destined to the Maher terminal, delays were split between the chassis depot and 
the terminal. Therefore, the delay at the terminal and the chassis depot for this vehicle type was 
simulated with a toll that had a range between 10 and 35 seconds. Summation of delays from the 
chassis depot and the terminal equaled the assumed delay of 2.25 minutes for chassis trucks. This 
adjustment was made because it was assumed that in-gate processing which occurred at the 
chassis depot entrance gate would not be repeated when the drayage truck arrived at the terminal 
entrance gate.  

Inspection delays for entrance gates servicing only bobtail trucks were reduced to a 
normal distribution with a mean of 1.25 minutes due to the further elimination of equipment 
inspection. All exit gate delays were estimated to be half of the delay for the corresponding 
vehicle type at an entrance gate. This reduction was based on the fact that in-gate processing 
delays at exit gates are known to be simpler than delays at entrance gates. 

In addition to in-gate processing delays terminal gates, the model was built to capture 
delay resulting from trucks showing up before terminal gates open. This phenomenon was 
modeled through the creation of periodic link files, which allowed links to be configured 
separately for each period of the simulation (periods were set in one hour increments). Demand 
was generated for the terminals between 5:00 AM and 6:00 AM, but the periodic file of the links 
was adjusted to close all but one lane for each vehicle type (at least one lane had to remain open 
for each vehicle type representing drayage trucks, otherwise Paramics would generate an error 
and would not release the drayage trucks into the simulation). This produced queues during the 
first hour of the simulation which represented drayage trucks showing up and idling as they 
waited for the gates to open. The periodic files were removed from the flat demand scenario, as 
this scenario is meant to represent the best case scenario. 

Simulating entrance and exit gates using the Paramics tolling feature allowed the model 
to capture changes that occurred due to the application of various gate strategies. The simulation 
captured queues that formed due to trucks arriving prior to the opening of terminal gates as well 
as queues that formed due to peaks in demand. Accurately representing terminal gate transactions 
was the key component of this model’s ability to assess the effectiveness of terminal gate 
strategies.  

3.5 OD development 

Upon establishing the physical aspects of the model, it was necessary to determine where 
the vehicles within the simulation would be coming from and where they would be destined to. 
The detailed data made available through the work of Dougherty (8) and Spasovic (9) was used to 
create the base OD of the PNE. The following is a list detailing the data used to create the base 
OD for the model: 

 Hourly demand of the PNE broken into entering and exiting vehicles. 
 Demand at the PNE entrances during peak hours (peak hours were given as 7:00-8:00 

AM, 12:00-1:00 PM, and 3:00-4:00 PM), separated by whether the vehicles were 
entering or exiting as well as by vehicle type. 

 Peak hour demands for terminals within the PNE. 
 Peak hour turn counts for intersections within the PNE. 
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This data was used as to create a set of origins and destinations that would cover the 24-
hour period of the simulation. An algorithm was written using MATLAB 7.7.0 (R2008b) (27) to 
automate the OD development. The algorithm was developed and used in lieu of the Paramics 
Estimator to give the user greater control over traffic assignment. In particular, the algorithm 
allowed for a more concise split of demand between cars and trucks and produced an OD that 
reflected the assumption that all traffic generated within the PNE would be destined to one of the 
exits. The algorithm also assumed that no through traffic or intra-port traffic occurred in the 
simulation (other than trucks using multiple strategic waypoint zones). Therefore, all traffic 
released into the simulation from an “other” zone would be destined to a zone that represented an 
exit of the PNE, and conversely, vehicles released into the simulation would be destined either to 
a vehicle sink representing an “other” zone or would pass through a series of strategic waypoint 
zones representing the terminals and be removed at a zone representing an exit from the PNE. 

Four scenarios were developed for evaluation: the current pattern of operation (CPO), 
extended hour, appointment, and flat demand scenarios. The CPO scenario was used to represent 
current gate operations at the PNE. The extended hour scenario is meant to represent the demand 
shift that would due to both longer operational periods at terminal gates and the application of 
fees to peak-hour drayage movements. In the appointment scenario, a specific number of lanes 
were converted from their function in the CPO scenario to appointment lanes. Changes in the gate 
operations of the appointment scenarios effected both demand patterns and length of delay at 
terminal gates. The final scenario was the flat demand scenario, which represents a hypothetical 
demand pattern for which all drayage truck demand was spread evenly over a 24-hour period. 
This scenario represents the best-case scenario for the terminals and was used to measure the 
effectiveness of the gate strategies. 

3.5.1 CPO OD scenario development 

The CPO OD represents known demand patterns at the PNE and was created in the first 
steps of the algorithm. Hourly demand (Dh) of the PNE was known, so the first step of the 
algorithm was to separate hourly demand by vehicle type (v). The portion of demand (given as a 
percentage) of cars and trucks (Pv) was given for peak hours. These percentages were expanded 
beyond the peak hours using the following assumptions:  

 90% of demand during non-operating hours of the terminals (10:00 PM-6:00 AM) 
would be passenger cars and the remaining 10% would be “other” trucks.  

 Demand distribution for hours between the opening of the terminals and the AM peak 
period (6:00 AM-8:00 AM) would be the same as the values given for the AM peak 
hour.  

 The remaining values (8:00 AM-10:00 PM) would be linearly distributed between 
given values.   

 
Upon expanding vehicle percentages to 24 hours (Pvh), the hourly demand was multiplied 

by vehicle percentages to determine hourly demand for the PNE by vehicle type (Dvh). The values 
for Dvh are shown in Figure 25. 
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Once the passenger car OD was developed, a second matrix, composed of trucks assigned 
to “other” destinations within the PNE, was created. The algorithm adjusted the value of Dvjh 
from the passenger car matrix to reflect demand for “other” trucks. The values for “other” 
vehicles were held constant over all of the scenarios (except future scenarios, where values for 
“other” vehicles were increased by the same percentages as drayage trucks), as demand patterns 
for these vehicles were assumed to be unaffected by the introduction of gate strategies at IMCTs.  

The next set of ODs created by the algorithm represented drayage trucks. Hourly demand 
for each terminal (Dvjh) had been determined in previous steps of the algorithm. Dvjh was 
combined with two variables, each of which had a separate function in distributing demand to the 
terminals.  

Truck type percentage (Tv) split demand into three truck types (i.e. container, chassis, and 
bobtail). The values for Tv were 55% for container trucks, 25% for chassis trucks and 20% for 
bobtail trucks. These values matched the values taken from a limited number of observations that 
were made using satellite imagery. The second variable (DPje) distributed demand among zones 
which represented entrances to the PNE (e) according to the terminal for which demand was 
generated (j). The values used for DPje are shown in Table 7. 

TABLE 7 Distribution of Truck Demand by Type 

Entrance/Exit 
Container Trucks Trucks w/ Chassis Bobtail Trucks

North Port Dor. North Port Dor. North Port Dor.

APM Terminal

North 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 80.0% 2.5%
Port 2.5% 80.0% 2.5% 42.5% 40.0% 2.5% 2.5% 2.5% 2.5%

Doremus 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%

Maher Terminal

North 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 80.0% 2.5%
Port 2.5% 80.0% 2.5% 42.5% 40.0% 2.5% 2.5% 2.5% 2.5%

Doremus 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%

PNCT

North 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 80.0% 2.5%
Port 2.5% 80.0% 2.5% 42.5% 40.0% 2.5% 2.5% 2.5% 2.5%

Doremus 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%
 

The values shown in Table 7 represent percentage of truck demand for each OD 
combination, separated by vehicle type and terminal. It was assumed that most trucks would use a 
route which minimized travel distance, therefore the largest percentage of trucks were distributed 
to entrances closest to their destinations. Truck ODs were created using the following equation: 

௩ܦ ∗ ௩ܶ ∗ ܦ ܲ ∗ 0.65 (3) 
 
It was necessary to reduce demand in the truck ODs using a constant because the use of 

strategic waypoint zones had eliminated demand which originated from the terminals in the given 
traffic counts. Initially, the constant was set at 0.50 but, after attempting to match turn counts in 
early simulation runs with known turn counts, it became apparent that this reduction excessive. 
After several iterations, a reduction of 35% of terminal demand was shown to approximate 



 

37 

observed turn counts. Had this constant not been used in the drayage truck OD calculations, the 
algorithm would have doubled total demand for the terminals using the given data because the 
traffic counts included both trucks arriving at and departing from terminals.  

 3.5.2 Extended hours OD 

Once the CPO OD was developed, the next step was to create a set of extended hour 
scenario ODs. As mentioned earlier, the only changes that would occur in the creation of an 
extended hour scenario would be made to drayage trucks. The goal of extending terminal gate 
hours is to divert a percentage of demand from peak hours to off-peak hours. The most effect 
extended gate implementation (10) used a fee to encourage movements to occur during off-peak 
hours. The use of such fees created a second, smaller peak in demand which occurred the first 
hour during which the fees were not assessed. This second peak occurs from 6:00 PM to 7:00 PM 
and simulates drayage operators attempting to avoid peak hour fees. The hourly distribution 
pattern used to simulate the extended hour scenario is shown in Figure 27. 

  

FIGURE 27 DEMAND DISTRIBUTION FOR EXTENDED HOURS SCENARIO 

Extended gate hour ODs were created by multiplying the 24-hour value of each 
terminal’s demand from the CPO OD to the hourly distribution percentages shown in Figure 27. 
The 24-hour demand for each terminal had to remain the same to ensure that the simulation was 
measuring changes due to gate strategies and not changes due to demand. Figure 28 compares 
total demand from the CPO scenario to total demand from the extended gate hour scenario for 
each terminal. The comparison in demand between the CPO scenario and the extended hour 
scenario shows that total demand for each terminal was held constant, therefore any difference in 
delays, travel times, or emissions were result of the application of extended gate hours and did not 
occur as a result of a change in demand.  
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FIGURE 28 DEMAND COMPARISON: CPO AND EXTENDED HOUR SCENARIOS 

3.5.3 Appointment scenario ODs 

The next step of the algorithm was to create a series of ODs which would represent 
various demand combinations between appointment and non-appointment trucks for the 
appointment scenarios.  A total of 5 ODs were created to represent different appointment system 
combinations. In each scenario, the percentage of trucks using the appointment systems was 
increased by 10%, giving a different combination of scheduled-to-unscheduled drayage 
movements. The appointment scenarios ranged from a minimum of 10% to a maximum of 50% 
of terminal demand utilizing appointment lanes, with the remainder of the demand assigned as 
non-appointment drayage movements. 

The algorithm created appointment scenario ODs by splitting hourly demand of the base 
scenario (Djh) into percentages of trucks with and without appointments. Equation 3 was used to 
create an OD for appointment trucks using the adjusted value of Dvjh (with the remaining 
variables unchanged from the base case). Demand for trucks with appointments was distributed 
evenly throughout each operational period of the terminals based on the assumption that terminal 
operators would attempt to use appointment systems to control arrival times of drayage trucks. 
The total demand for each terminal in the appointment scenarios is compared to total demand for 
each terminal in the CPO scenario in Figure 29. 

Figure 29 shows that demand was held relatively constant over each appointment 
scenario. The slight difference in demand between the scenarios stems from rounding in the 
algorithm (as demand must be expressed as integers in OD matrices) and was held to less than 
0.4% for each of the scenarios. As demand was held constant, any changes in travel times, delay, 
and emissions between the CPO scenario and the appointment scenario would be a result of the 
implementation of the appointment scenario and not occur because of a change in demand. 

Five ODs were created for the appointment scenarios to determine which proportion of 
appointment trucks to non-appointment trucks would best utilize the number of appointment and 
non-appointment lanes established during the creation of the model. The five appointment 
scenarios were only tested using base demand, as it was assumed that increasing demand in future 
scenarios would only exacerbate over- and under-utilization of lanes. The evaluation of different 
appointment demand combinations will be discussed in Section 4.1. 
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FIGURE 29 DEMAND COMPARISON: CPO AND APPOINTMENT SCENARIOS 

3.6 Modeling emissions 

Emissions calculations for the PNE included all vehicle types. Three different emissions 
models were considered for estimating the emissions generated by drayage operations at the port; 
the Comprehensive Modal Emission Model (CMEM), the Motor Vehicle Emission Simulator 
(MOVES), and Paramics Monitor plug-in. All three were capable of calculating emissions for 
carbon dioxide, carbon monoxide, nitrogen oxide and particulate matter (from diesel trucks). 

The CMEM model (28) was based on data which was collected from a set of vehicles that 
was meant to represent a typical traffic stream. The CMEM model included a Paramics plug-in 
capable of calculating vehicle emissions for 28 categories of light-duty vehicles and 3 categories 
of heavy-duty diesel vehicles. The model was developed to work with Paramics version 5, where 
the reporting interval of the CMEM plug-in could be adjusted using a graphical user interface 
(GUI) tool. Vehicle types used to calculate emissions were matched with vehicle types defined by 
the user in the Paramics simulation. The CMEM plug-in was installed in the earliest versions of 
the PNE simulation and used to produce emissions reports. A report was created after every 10 
minutes of simulation (the default setting of the CMEM plug-in), as the simulation of the PNE 
was created using version 6 of Paramics, which removed GUI capabilities, thereby removing the 
capability of the user to adjust the reporting interval of CMEM. Ultimately, CMEM was not used 
to estimate emissions for the PNE as it was not possible to compile data every 10 minutes over a 
24-hour simulation due to CPU capacity restraints. 

MOVES 2010a, which was developed by the U.S. Environmental Protection Agency 
(29), was also assessed as a possible method for estimating emissions of the PNE. After analyzing 
MOVES, there were two reasons it was not used for emissions estimations. The first reason was 
that MOVES did not directly interact with output from Paramics. Calculations obtained from 
MOVES are based on average vehicle speed, average vehicle miles traveled, and average vehicle 
counts per link. The MOVES model does not utilize the vehicle-specific data generated by 
Paramics, negating one of the advantages of using a microscopic traffic simulation to estimate 
emissions.  
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The second reason that MOVES was not used involved scale. MOVES is not meant to be 
adjusted to a microscopic level, as project level data in MOVES scales links in miles. This 
presented a problem when attempting to integrate MOVES to the simulation of the PNE because 
none of the links in the Paramics model were over 1 mile long. In fact, most were segments of 
less than 1,000 feet in length. It was assumed that adjusting data from the microscopic level of the 
PNE simulation to the macroscopic level of MOVES would result in errors when estimating 
emissions, therefore an emissions estimation that could be done in the same scale was preferred 
over one in which the scale would have to be changed. 

The final emissions estimation model that was considered was the Paramics Monitor 
plug-in. Monitor was based in part on work performed by the Department of Transport in the 
United Kingdom (24). The data used to create the Monitor plug-in was gathered from tests of 
emissions outputs of various engine types and was used to relate emissions levels to vehicle speed 
and acceleration. Default emissions calculations in Monitor are calculated using a 
speed/acceleration unit (meters2/seconds3) and vehicle speed (kilometers per hour). The metric 
values of the default emissions file were converted to English units to match the units of the PNE 
simulation. The ease of use and the direct conversion of Paramics data into emissions files were 
the reasons that the Paramics Monitor plug-in was selected to estimate emissions of the PNE. 
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4. RESULTS 

As described in previous sections, the PNE simulation was comprised of four scenarios; a 
CPO scenario which represented gate operations in their current operational state, an extended 
hour scenario where terminal gate operating hours were extended to 12:00 AM, an appointment 
scenario where a percentage of the drayage truck demand was converted to appointment trucks, 
and a flat demand scenario which represented a best-case where drayage truck demand would be 
spread evenly over a 24-hour period. Each scenario was evaluated by total delay, hourly delay, 
delay at the gates, travel times within the terminals, and emissions generated. Delay was 
measured by subtracting free flow travel time from the actual travel time of a vehicle (24) and 
was recorded as average seconds of delay per vehicle. The results shown were taken from the 
average of 15 iterations of each scenario. A separate evaluation was conducted for the 
appointment scenarios to determine which of the five demand combinations would yield the best 
results for a specific set of gate configurations. Details of the appointment scenario evaluation are 
described in Section 4.1. 

4.1 Appointment scenario evaluations 

A number of different gate configurations (number of appointment VS non-appointment 
entrance/exit lanes) could have been used to represent the appointment scenario at the PNE. The 
gate configuration selected for our model converted 30% of the entrance and exit lanes at each 
terminal to appointment lanes. A total of five appointment OD combinations were created with 
the following appointment-to-non-appointment truck demand patterns: 10%-90%, 20%-80%, 
30%-70%, 40%-60%, and 50%-50%. Hourly delays for drayage trucks for each appointment OD 
combination are shown in Figure 30. 

  
FIGURE 30 HOURLY DELAYS FOR APPOINTMENT SCENARIOS 

Figure 30 shows that hourly delays varied between appointment scenarios. In 
appointment scenarios where 10% and 20% of drayage truck demand was converted to 
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observation of these simulations revealed much of that increase was the result of under-utilization 
of appointment lanes and over-utilization of non-appointment lanes. Congestion on non-
appointment lanes was particularly noticeable at the entrance to the PNCT, where a reduction in 
available lanes caused queues to reach the PNE’s primary access road. This queue delayed all 
vehicles attempting to enter or exit the PNE from the north.   

Conversely, appointment scenarios for which 40% and 50% of drayage truck demand 
was converted to appointment trucks saw delay increases due to the over-utilization of 
appointment lanes and the under-utilization of non-appointment lanes. The overall increase in 
delays for the higher demand combinations was lower because congestion was occurring on 
appointment lanes where in-gate processing delays were reduced.  

Each scenario was also evaluated by delays at terminal entrance gates. Figure 31 shows 
APM entrance gate delays for the appointment scenarios. Under-utilization of appointment lanes 
in the 10% and 20% appointment scenarios results in the increased hourly delays for these 
scenarios. Delays at entrance gates remained fairly steady over the three remaining scenarios, 
which indicated proper lane utilization. An uptick in delay from 5:00 AM to 6:00 AM can be seen 
for each of the scenarios and is a result of trucks arriving before the terminal opens.  

 
FIGURE 31 HOURLY DELAY FOR THE APM ENTRANCE GATE, APPOINTMENT 

SCENARIOS 

Delays for links representing the entrance to the PNCT are shown in Figure 32. Delays at 
the PNCT entrance had the greatest impact on the rest of the simulation because the geometry of 
the terminal entrance made the PNCT susceptible to congestion problems due to slight shifts in 
demand patterns. Truck delays for vehicles entering the terminal in the 10% and 20% 
appointment scenarios remained consistently high from 9:00 AM until the terminal closed at 7:00 
PM, which indicated that queues during these hours extended beyond the entrance and onto the 
PNE’s main roadway network. The fact that much of the delay was occurring on the PNE’s 
access road meant that they were not captured as delay for the entrance gate. Delay patterns for 
the 40% and 50% appointment scenarios showed a reduction in total delay. This reduction in 
stemmed from the fact that a greater amount of demand was shifted to appointment lanes with 
reduced delay at gates. 
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FIGURE 32 HOURLY DELAY FOR THE PNCT ENTRANCE GATE, APPOINTMENT 

SCENARIOS 

Delays for vehicles at links leading up to and including the entrance gates at the Maher 
terminal are shown in Figure 33. Queues from the PNCT had an effect on delay patterns at the 
Maher terminal. The 10% and 20% appointment scenarios at the Maher terminal showed a 
reduction in delay between 12:00 PM and 6:00 PM. This reduction is counter-intuitive, as total 
delays for the PNE increase during these periods (Figure 29). Visual observation of the 
appointment scenario showed that delay reductions occurred at the Maher entrance because 
queues extending from the PNCT entrance reached the PNE’s main access road during this period 
and restricted the number of trucks that could reach the Maher terminal during these hours.  

 
FIGURE 33 HOURLY DELAY FOR THE MAHER ENTRANCE GATE, 

APPOINTMENT SCENARIOS 

The spike in demand that occurred in the AM period of the 10% appointment scenario 
and the PM period of the 20% appointment scenario represented a lack of capacity stemming 
from a reduced number of non-appointment lanes at the Maher entrance. Delays for the remaining 
appointment scenarios showed proper lane utilization.  
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The goal of evaluating multiple appointment scenarios was to determine which scenario 
produced the greatest reduction in delays at the PNE. The 10% and 20% appointment scenarios 
were not selected because excessive queue lengths at the PNCT entrance in these scenarios had a 
negative impact on delays for the rest of the PNE. Similarly, queues at the PNCT entrance 
increased total delays for the 40% and 50% appointment scenarios, this time due to congestion 
from vehicles trying to reach appointment lanes and creating a bottleneck at the PNCT entrance. 
The best results from the appointment scenarios occurred when 30% of the drayage truck demand 
was assigned to appointment trucks. This scenario showed a steady delay pattern for each 
terminal entrance as well as consistent delay over all links of the PNE. The 30% appointment 
scenario was also the only scenario for which total delays were reduced when compared to the 
CPO scenario. In all subsequent gate strategy comparisons, the appointment scenario will refer to 
a scenario in which 30% of the drayage truck demand is appointment trucks and the remaining 
70% of drayage truck demand is non-appointment trucks. 

 4.2 Comparison of gate strategies 

The simulation of the PNE included three separate gate configurations: the current pattern 
of operation (CPO), extended hours of operation, and an appointment system. Each scenario had 
a base OD which was created using known data. Five future scenarios were developed in which 
base demand was increased by 10%, 20%, 30%, 40%, and 50%, respectively. Hourly delays for 
drayage trucks over the 24-hour period of the simulation are shown in Figure 34. 

Figure 34 shows that under the CPO, increases in delay for the base demand OD occurred 
during both the AM and PM peak periods. AM delay was caused by drayage trucks arriving at the 
terminal gates prior to their opening. Increased delay during the PM period (12:00 PM to 4:00 
PM) was a result of heavier truck volumes during these periods. The appointment scenario 
showed similar patterns of delay, with hourly delays being consistently lower than that of the 
CPO. Extending the gate hours had the effect of smoothing the delay pattern for all demand 
levels.  

When demand was increased to 110%, truck delays for the CPO scenario doubled during 
the PM peak. Increases in truck delays under the appointment scenario appear to be correlated to 
the increase in demand. Minimal increases in delay occurred in the extended hour scenario. 
Increasing drayage truck demand to 120% of the base caused a significant increase in delays 
during the PM peak for both the CPO and the appointment scenarios. Delays for the extended 
hour scenario remained relatively constant over the operational period of the terminals.  

Increasing demand by 30% caused further increases in delay for the CPO and the 
appointment scenarios. The increased delay for drayage trucks in the appointment scenario 
indicated that the appointment system did not reduce delays within the PNE enough to stave off 
congestion. The delay pattern for the CPO began to spread out, which indicated that congestion 
was starting to build prior to the PM peak and was taking longer to dissipate afterwards. The 30% 
increase in demand produced a slight uptick in delay in the extended gate hour scenario, but the 
overall delay pattern remained consistently low.  

Increasing demand by 40% produced a large spike in delay for the CPO scenario. This 
indicated that the PNE was nearing capacity under current patterns of operation. Hourly delays in 
the appointment scenario began to spread out with the 40% increase in demand, indicating that 
congestion was beginning to occur prior to the PM peak. The extended hour scenario continued to 
display a relatively flat delay pattern.  
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FIGURE 34 HOURLY DELAY 
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The final increase in demand was 50%. This increase caused both the CPO and 
appointment scenarios to experience large amounts of congestion over all operational hours of the 
terminals as well as a large shift of delays to periods extending beyond the original operating 
hours of the terminals. This indicates that these scenarios are not able to cope with a 50% increase 
in demand without large amounts of congestion. Delays for the extended hour scenario increased 
significantly at this level of demand as well. The flat delay pattern for the extended hour scenario 
indicates that the scenario may be able to accommodate larger increases in demand.  

To get a larger picture of the effect that demand increases had on drayage operations, 
delay was measured over the 24-hour period for each demand level. Total delay was measured 
against the equivalent value from the CPO scenario. The results of this comparison are shown in 
Figure 35.  

For the base OD, the appointment scenario outperformed the extended hour scenario. The 
appointment system was more effective at reducing total delay because congestion was minimal 
for the base OD, therefore the reduction of in-gate processing delays for appointment trucks had a 
greater impact than shifting demand. For the 10% increase in demand, both the extended gate 
hour and appointment scenarios reduced delays by approximately 40%.  

 
FIGURE 35 TOTAL DELAY 

The extended hour scenario outperformed the appointment scenario when a 20% increase 
in demand was applied to the base OD. For all scenarios in which the demand was increased by 
more than 20%, extending hours was much more effective at reducing delays than the 
appointment system, indicating that the appointment system was unable to control congestion at 
the PNE beyond these demand levels.  

A key part of this research was to determine the effects of gate strategies on congestion. 
One of the goals of this research was to determine the delay for drayage vehicles from the time 
they enter the port to the time the exit. As stated earlier, many of the previous attempts to quantify 
gate strategy effectiveness lacked either representation of the roadway network or representation 
of the terminals. Figure 36 shows the percentage of hourly delay that occurred within the 
terminals. 
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The comparison of drayage truck delay within the terminal to drayage truck delay on the 
roadway network shown in Figure 36 shows how increases in demand effect the location where 
delays occur. For base demand, approximately 70% of the delay for drayage trucks occurs within 
the terminals. The percentage begins to drop after 5:00 PM when the APM terminal closes, as a 
larger percentage of delay for the Maher and PNCT terminals occurs on the roadway network due 
to their external chassis depots.  

Figure 36 also illustrates how increases in demand effects congestion on the roadway 
network. As demand increases, the fluctuations in percentage become greater. The AM peak 
(where more passenger cars are on the roadway network) and the PM peak (large increase in 
truck demand) can be clearly seen in the CPO and appointment scenarios when demand in 
increased to 110%. When demand is increased by 20%, a large spike in delays on the roadway 
network occurs in the CPO scenario during the PM peak. A 30% increase in demand causes both 
the appointment and CPO scenarios to experience large percentages of delay on the roadway 
network. At 40% and 50% increases in demand, less than 50% of drayage truck delays in the gate 
strategy scenarios occur within the terminals. This data highlights the fact that gate strategies 
should not be implemented without consideration to the effect that demand increases will have on 
the roadway network, as well.  

To determine the effect that gate strategies had on delay on individual terminals, a 
comparison of delay on links leading up to and including the entrance gates to the terminals was 
conducted. Results for the extended hour scenario are shown in Figure 37, which shows that 
delays at each terminal gate were steadily reduced up to a 30% increase in demand. The results 
varied when demand was increased by 40% and 50%. The APM terminal entrance gate showed 
continued improvement in delay reductions. AT the PNCT entrance gate, delays were lower than 
the CPO scenario but were increasing when compared to the base, 10%, 20%, and 30% demand 
scenarios. At the Maher terminal entrance, delays were actually larger for 40% and 50% demand 
increases. Observation of simulation runs where demand was increased by more than 30% and 
current pattern of operations were used for the terminal gate configurations showed that queues 
from the PNCT became so large that they extended into the main roadway of the PNE. These 
queues obstructed vehicles entering the PNE from the north entrance, therefore the number of 
vehicles able to access Maher terminals during peak hours was limited. The overall delay 
increased during peak hours due to queues on the roadway network in the CPO scenario, but 
delay at the Maher terminal gate was reduced as demand was unable to reach the gates during 
peak hours.  

The shift of demand caused by extended gate hours of operations eliminated this 
congestion on the roadway, which allowed trucks destined to the Maher terminal to reach their 
destination with limited delay.  Therefore, the increased delays at the Maher terminal entrance 
actually show that drayage operations for the extended hour scenario are improved when 
compared to the CPO scenario.  
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FIGURE 36 PERCENTAGE OF DELAYS OCCURRING WITHIN TERMINALS  
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FIGURE 37 DELAY AT ENTRANCE GATES, EXTENDED HOUR SCENARIO 

Delays at terminal gates for the appointment scenario are shown in Figure 38. Maher 
terminal delays for the appointment scenario are similar to those of the extended hour scenario. 
Delays for the PNCT show that the appointment scenario was less effective for demand increases 
greater than 20%. Delays at the APM terminal entrance gate showed that the benefits of the 
appointment scenario decreased as demand increased.  

 
FIGURE 38 DELAY AT ENTRANCE GATES, APPOINTMENT SCENARIO 

A direct comparison of travel time within the IMCTs is shown in Figures 39, 40, and 41. 
This comparison shows differences between terminal travel times in the gate strategy scenarios 
when compared to the CPO scenario.
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FIGURE 39 APM TRAVEL TIMES 
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FIGURE 40 MAHER TRAVEL TIMES 
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FIGURE 41 PNCT TRAVEL TIMES
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Travel times for the APM terminal are shown in Figure 39. For the base and 110% 
demand scenarios, travel times remain close to the values recorded in the CPO scenario. At 
demand increases greater than 20%, travel times in the appointment scenario became higher than 
the CPO scenario during the PM peak. The extended gate hour scenario continued to reduce 
travel times at the terminal in a manner consistent with that found in the results from the flat 
demand scenario until the demand level was increased by 40%. 

Figure 40 shows the travel times recorded in the Maher terminal and chassis depot. The 
base and 110% demand show patterns similar to that of the APM terminal, where all three gate 
strategies show similar reductions compared to the CPO. The travel times for the extended hour 
scenario began to separate from the flat demand scenario in the AM peak, with the travel times 
increasing as demand increased. Travel times for the appointment scenario also began increasing 
when demand was raised by 20%, but the increase occurred during the midday and PM periods.  

Travel times for the PNCT are shown in Figure 41. Fluctuation between the appointment 
scenario and the flat demand scenario began with the base OD. This sensitivity is a result of the 
difficulty of implementing an appointment system at the PNCT due to its geometry. When 
demand was increased by more than 30%, travel times for the appointment scenario were actually 
higher than that of the CPO scenario. The extended hour scenario also showed greater fluctuation 
in travel times at the PNCT. The travel times for the extended hours scenario start to separate 
from the flat demand travel times when demand is increased by 10%, with travel times getting 
further separated from the flat demand scenario as demand is increased.  

The final step in our analysis was to determine how congestion at the PNE affected 
emissions levels. Hourly measurements were made for carbon monoxide, carbon dioxide, oxides 
of nitrogen, hydrocarbons, fuel consumption and diesel particulates. Emissions levels were 
calculated for the base (100%), 110%, 120%, and 130% ODs. Emissions for the 140% and 150% 
ODs were omitted, as demand levels exceeded the capacity during these simulations, thereby 
skewing the emissions data. Hourly emissions for carbon monoxide are shown in Figure 41. 

The hourly emission patterns shown in Figure 41 resemble hourly delay patterns shown 
in Figure 34. The AM and PM peaks can be seen under both the CPO and appointment scenarios. 
Hourly emissions from the extended hour scenario show the same characteristics as delay, having 
a consistently smooth pattern for each demand level. Hourly patterns for the remaining emissions 
categories mimic those of carbon monoxide and are included in the Appendix.  

The hourly emissions patterns shown in Figure 41 show that at the base demand level, the 
hourly emissions produced by the CPO, extended hour, and appointment scenarios are all 
relatively similar. As demand increases, the emissions produced by the extended hour scenario 
are significantly reduced when compared to the CPO and appointment scenarios.  
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FIGURE 41 HOURLY CARBON MONOXIDE EMISSIONS 

A 24-hour emission output for four levels of demand (i.e. base (100%), 110%, 120%, and 
130%) was compared with the CPO scenario and is displayed in Table 8. 
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TABLE 8 Emissions Totals 

 
 

Table 8 shows some clear patterns for gate strategy effectiveness. First, extending gate 
hours becomes more effective as demand increases. Emission reductions for the base OD were 
minimal (less than 6%). As demand increased, so did the benefit of extending hours. The 
appointment system had an inverse relationship between demand and emission reduction. The 
appointment system was most effective on small increases in demand. Once demand reached 
levels which caused congestion within the port, the appointment system did not reduce emissions. 
In fact, converting lanes to “appointment only” appears to have a negative impact when 
congestion becomes a factor, as emissions levels for a 30% increase in demand were higher for 
the appointment scenario than for the CPO scenario. Results from the 40% and 50% increases in 
demand were omitted from Table 8 because it was believed that the high levels of congestion in 
these scenarios prevented a significant percentage of vehicles from being released into the 
simulation, thereby distorting the emissions levels.  

Results from the simulation led to the conclusion that establishing appointment systems 
at terminal gates can be a risky procedure. A balance must be achieved between non-appointment 
and appointment lane demand that will best utilize the selected lane configuration. Failure to 
reach this balance will increase delays and emissions, rather than reduce them. In contrast, an 
extended gate hour program that successfully shifts demand will allow IMCTs to effectively deal 
with increases in demand.  

  

Demand Ext. Apt. Demand Ext. Apt. Demand Ext. Apt.
Base -4.7% -2.2% Base -5.5% -3.4% Base -5.6% -3.6%
x 1.1 -16.8% -12.1% x 1.1 -18.8% -14.3% x 1.1 -18.7% -15.4%
x 1.2 -30.3% -3.6% x 1.2 -32.8% -8.4% x 1.2 -32.4% -10.4%
x 1.3 -38.4% 12.4% x 1.3 -41.9% 8.8% x 1.3 -41.7% 6.3%

Demand Ext. Apt. Demand Ext. Apt. Demand Ext. Apt.
Base -5.8% -4.2% Base -5.5% -3.3% Base -5.5% -3.9%
x 1.1 -19.1% -15.1% x 1.1 -18.8% -14.2% x 1.1 -18.2% -14.4%
x 1.2 -32.8% -13.5% x 1.2 -32.9% -7.9% x 1.2 -31.4% -13.6%
x 1.3 -42.5% 3.2% x 1.3 -41.9% 9.4% x 1.3 -41.1% 2.2%

Particulate Matter

Carbon Monoxide Carbon Dioxide Total Hydrocarbons

Oxides of Nitrogen Fuel Consumption
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5. CONCLUSIONS AND FUTURE RESEARCH 

Despite the recent economic downturn, forecasts continue to predict that Intermodal 
Marine Container Terminals (IMCTs) will experience growth in container volumes. The growth 
in container volumes is expected to result in substantial increases in congestion for both seaside 
and landside terminal operations. IMCTs are under pressure to come up with strategies to 
accommodate the increasing demand. One of the major factors contributing to the congestion 
problem is that terminal gates are open during certain hours of the day. Consequently, trucks are 
forced to pick-up and deliver containers during specific hours of the day, resulting in high 
demand over these periods. This phenomenon has led to inefficient gate operations that can spill 
traffic over to the surrounding roadway network and cause safety and congestion problems.  

The problem of congestion may also extend to the terminal yards where high demand 
peaks for service on the landside coupled with capacity issues can degrade reliability and 
performance of the terminal. In addition to these issues, environmental effects stemming from 
idling trucks has further emerged as a serious problem, as truck emissions have been linked to 
negative health conditions. Different solutions have been proposed to reduce the amount of air 
pollution from drayage operations including new technologies, operational strategies, and 
financial mechanisms. Due to the limited and very expensive right of way in the area surrounding 
IMCTs, applying low cost and quickly implementable approaches to address mobility constraints 
at IMCTs becomes more viable than physical capacity expansions.  

Different operational strategies have been suggested (e.g. gate appointment systems, 
extended hours of operations for terminal gates, and advanced technologies for gates and 
terminals) to relieve the effects of congestion and help improve air quality. The impact of gate 
strategies (either at the tactical or operational level) on drayage operation efficiency is not very 
well understood, and is an area where researchers and practitioners have become increasingly 
involved. A number of researchers have attempted to evaluate the effects of different gate 
strategies either through simulation modeling or through before-and-after case studies of 
terminals which have implemented gate strategies.  

This research presents the development of a traffic simulation model capable of 
measuring the impact that gate strategies will have on the levels of congestion at IMCT terminal 
gates. The traffic model was used to quantify travel time, delay, and emission levels within the 
terminals and on the roadway network in the vicinity of the IMCTs before and after gate 
strategies have been implemented. To our knowledge this is was the first attempt in the published 
literature to capture delays and emission levels at the gates of terminals using a traffic simulation 
model. These delays contribute to the inefficiency of drayage operations within IMCTs, and 
knowledge as to how various gate strategies affect efficiencies could prove valuable for future 
planning of IMCTs. Based on results from a case study, it was concluded that the majority of 
delays experienced by drayage trucks occurs at the terminal gates and that omission of terminal 
gates should be discouraged as it can lead to a 70% underestimation of the delay.  Results from 
the case study further indicate that the most effective gate strategy for reducing congestion at 
terminal gates as well as within the roadway network (as well as emissions) was extending the 
terminal gate hours to divert demand to off-peak hours.  

The methodology presented herein can be improved with the following future research. 
First, the dataset from which the vehicle distributions and ODs were determined can be expanded 
to improve the accuracy of the model, particularly data that details vehicle movements occurring 
at an IMCT. Establishing the logic behind drayage movements between terminals and chassis 
depots, particularly for specific vehicle types, would also improve the functionality of this model. 
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Second, future research should consider the development of a delay function within the terminal 
yard. The current model uses vehicle speed to represent terminal yard transaction times, which 
may not accurately capture delays and emission levels. Establishing a delay function to represent 
yard transactions could improve the quality of the simulation. We note that adopting this 
approach would result in emissions estimation as a post-simulation process. Finally, an additional 
step for future research would be to include delays that occur within the chassis depots due to 
drayage operators picking up or dropping off a chassis.  
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APPENDIX 

 
FIGURE A-1 HOURLY CARBON DIOXIDE EMISSIONS 
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FIGURE A-2 HOURLY HYDROCARBON EMISSIONS 
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FIGURE A-3 HOURLY NITROGEN OXIDE EMISSIONS 
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FIGURE A-4 HOURLY FUEL CONSUMPTION 
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FIGURE A-5 HOURLY DIESEL PARTICULATE EMISSIONS 
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