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PROJECT DECRIPTION 

The overall goal of the pavement design is to meet the intended service life and more importantly 

to provide a safe riding surface for the traveling public.  Therefore, pavements can experience 

structural failure (i.e. rutting or cracking) or functional failures, where the pavement becomes 

unsafe from a riders perspective due to a lack of sufficient surface texture (friction). Several 

countries within the European Union have specifications related to measurement of surface 

texture already in place to ensure a minimum level of friction.  The barrier to implementing 

similar practices in the United States is in further development of friction measurement and 

analysis methods. Measuring pavement friction involves specialized equipment with a relatively 

high initial cost. In addition, many devices require that measurements be made on field pavement 

sections, incurring further delay in opening a new pavement to traffic. Several recent studies 

have correlated asphalt pavement surface texture with friction using relatively inexpensive, non-

intrusive devices. These devices can be used in the laboratory as well as in the field and have 

shown promise in estimating not only pavement surface texture and friction, but also noise 

emissions. With further development, these methods will give pavement designers the necessary 

tools to evaluate asphalt pavement surface texture in terms of pavement friction, promoting 

development of new specifications. This project refines and applies these methods to several 

plant produced mixtures to estimate surface texture and friction. Limits on the mix design 

parameters most affecting rider safety (friction) will be proposed.  
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CHAPTER 1. INTRODUCTION 

SIGNIFICANCE AND PURPOSE 

 

In recent years, pavement designers are increasingly challenged by achieving ideal surface 

friction properties to enhance drivers’ safety, through mixture design and material selection. 

Sufficient pavement texture is needed to ensure adequate friction between tires and the 

pavement, though too much texture can result in detrimental consequences related to tire 

wear and fuel consumption. Only with sophisticated finite element modeling software and 

analysis tools have researchers begun to understand how complex the interaction at the tire-

pavement interface truly is. Yet characterization of the tire surface alone is insufficient for 

describing the tire-pavement interaction, as pavement surface texture characteristics also 

contribute significantly to the tire-pavement relationship. Pavement mixture design 

specifications and material selection influences skid resistance, therefore, a clear 

understanding of relationship between pavement mixture design properties and surface 

friction is needed.  

 In the present study, the "Surface Laser Profilometer" (SLP) device is used to 

measure surface texture, by scanning the surface of laboratory compacted and field core 

samples, from which a surface texture profile is derived. Surface texture data is analyzed to 

calculate the "Mean Profile Depth" (MPD). After the SLP scans the mixture sample or 

pavement surface profile, macro-texture (spatial wavelengths ranging from 0.5 mm to 50 

mm) parameters and micro-texture (spatial wavelengths less than 0.5 mm) parameters can 

be extracted using signal processing techniques and related to friction properties. 

 Statistical analysis and neural networks modeling are used to find relationship 

between the MPD results estimated from laser profilometer measurements and mixture 

design properties (i.e., aggregate size, gradation curve shape, binder content, air voids, and 

volumetric properties). Promising trends are observed in the data that can potentially be 

used as guidance for mixture designers to optimize mixture design properties in order to 

achieve better pavement surface friction and thus enhance drivers' safety. 

 Additionally, relationships between field measured friction (mainly Friction Number 

(FN)) and laboratory measured texture parameters are developed. FN values measured by 

using the locked-wheel tire test in the field were taken from the MnROAD test track 

database and used for analysis. It is shown that there is a correlation between FN and MPD, 

presenting the opportunity to achieve a target value of friction in the field through materials 

selection in the mix design phase supplemented with laboratory measurement and analysis 

of friction properties. Such relationships between laboratory measurements and field friction 

could lead to better control of pavement surface friction, thus allowing for control of both 

pavement structural and functional performance.  

 Using statistical analysis and artificial neural network modeling, mixture design 

parameters (i.e. volumetric and aggregate gradation properties) could be related to 

laboratory texture measurements (MPD). Therefore, knowing mixture design properties can 

lead to the estimation of road texture parameters. It is also shown that pavement texture is 

mainly controlled by aggregate gradation and mixture volumetric characteristics. 

Additionally, it was shown that increasing the distance of the gradation curve from the 
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maximum density line is more important than the overall coarseness or fineness of the 

gradation in terms of increasing the expected texture. Laboratory measured friction 

parameters (MPD) can be related to field friction values (FN) using regression analysis. 

Utilizing the models developed in this study, by further investigation, mixture designers can 

have a guideline to estimate friction. Models developed in this study showed that the 

measurements for field and laboratory compacted samples from SLP device can be used to 

estimate friction parameters. 

 

 

RESEARCH OBJECTIVES 

 

The objectives of this work are focused on developing methods to estimate field friction 

based on laboratory measured samples, and understanding how different mixture design 

parameters affect surface texture characteristics. The specific objectives include: 

 

1. Evaluating the relationship of mixture design parameters (i.e. volumetric and 

aggregate gradation properties) to laboratory texture measurements (MPD). 

2. Estimation of pavement texture parameters based on mixture design properties. 

3. Evaluating the relationship of laboratory measured texture parameters (MPD) to 

field friction values (FN). 

4. Proposing a guideline model for mixture design to estimate friction. 
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CHAPTER 2. LITERATURE REVIEW  

This chapter highlights the findings of the investigation in literature, focusing mainly on 

texture and friction of asphalt pavements. It begins with an introduction to safety 

considerations, surface texture characterization, and factors influencing surface texture of 

pavements. The second section focuses on friction characterization, friction mechanisms 

between tire and pavement, factors influencing friction, and friction measurement methods. 

The literature review also includes a description of the measurement and analysis system 

used for this research. 

 

 

Safety Considerations 

 

The relationship between surface texture and accident rates has been well documented over 

the past 30 years (Noyce et al 2007, Hall et al 2009). Safety becomes particularly important 

under wet conditions, where a lack of adequate surface texture dramatically increases the 

risk of hydroplaning and loss of vehicular control. Thus, a primary functional quality of 

pavements is to provide adequate friction, as it is linked to the safety of the roadway. 

 

Increasing demand for mobility which results in high number of vehicles and more frequent 

crashes makes the safety of both the road and driversa high priority issue.. alone recent 

study estimates that the cost for highway accidents in 2000 exceeded $230 billion (Noyce et 

al 2007). Many of these crashes are tied to wet road conditions, and possibly to inadequate 

friction characteristics. This cost is expected to increase with increasing demand for 

transportation facilities domestically and abroad. Therefore, advancing the knowledge 

regarding improved friction characteristics and adopting better design methods to improve 

friction could refocus limited financial resources being spent today on crash investigations. 

 

Because surface texture is directly related to friction, and particularly micro-texture (spatial 

wavelengths less than 0.5 mm) and macro-texture (spatial wavelengths ranging from 0.5 

mm to 50 mm) levels, measuring surface texture serves as an indicator for friction, and 

hence for safety. Macro-texture, and to a lesser degree micro-texture, is a major contributor 

to friction safety characteristics (Hall et al 2009). High levels of macro-texture allow for 

water drainage, which minimizes the risk of hydroplaning in wet conditions.  

 

Other studies have investigated the link between wet-weather crashes and pavement friction. 

Rizenbergs et al found higher wet crash rates for lower values of skid number (Rizenbergs 

et al 1972). Giles et al and Cairney investigated crash incidence as a function of skid 

number and demonstrated that crash incidence increases quickly once a minimum threshold 

value is reached (Giles et al 1962, Cairney 1997). McCullough and Hankins showed that 

most crashes occur with low pavement friction levels and very few crashes occur with high 

levels of pavement friction (McCullough and Hankins 1966). Kamel and Gartshore 

described how resurfacing a few dangerous sections of Canadian highways significantly 
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reduced crashes in wet and dry conditions (Kamel & Gartshore 1982). Wallman and Astrom 

suggested that increasing pavement friction can significantly reduce the incidence of crash 

rates (Wallman & Astrom 2001). Kuttesch has suggested that when friction level falls below 

a minimum threshold value, the likelihood of wet crashes increases significantly (Kuttesch 

2004). In summary, many studies have shown that safety is tied to pavement friction, and 

friction is related to surface texture. Thus, improving surface texture characterization 

methods and friction measurement methods can lead to fewer crashes and safer roads. 

 

Surface Texture Characterization 

 

Surface texture refers to asperities in the pavement surface that arise from the combination 

of different aggregate shapes and sizes used in asphalt mixtures.  Surface texture is defined 

in terms of wavelength (λ, distance along the surface) and amplitude (a, height above the 

surface). Fundamentally, surface texture is a the property that can be controlled in pavement 

design that affects the friction and safety in roadways. Based on the definition by the 

Permanent International Association of Road Congresses (PIARC) in 1987, surface texture 

is divided into four ranges in terms of texture wavelength and amplitude (Henry, 2000).  

The micro-texture which is the smallest range, represents the wavelengths smaller than 0.5 

mm. The macro-texture refers to wavelengths from 0.5 mm to 50 mm. The roughness on the 

surface of each coarse aggregate is related to micro-texture while the overall pavement 

surface roughness (i.e. different aggregate arrangement) can be described by macro-texture 

(Ivan, et al., 2010). The other two ranges of surface texture are called Mega-texture and 

Unevenness. Mega-texture refers to spatial wavelengths ranging from 50 mm to 0.5 m with 

amplitudes ranging from 0.1 mm to 50 mm. The largest range is called unevenness or 

roughness and encompasses spatial wavelengths greater than 0.5 m. Figure 1 displays the 

different ranges of surface texture graphically, and Table 1 summarizes these ranges. Each 

range of surface texture impacts tire-pavement behavior differently, so coupling the 

appropriate spatial scale with the effect in question is critically important.   
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Figure 1. Graphical representations of four surface texture regimes. 

 
Table 1. Texture wavelength ranges 

Region Wavelength 

Micro-texture λ < 0.5 mm 

Macro-texture 0.5 mm < λ < 50 mm 

Mega-texture 50 mm < λ < 500 mm 

Unevenness 0.5 m < λ < 50 m 

 

The influence surface texture at different spatial scales on vehicle impacts is provided in 

Figure 2. At large texture wavelengths (λ > 50 mm) and low spatial frequencies (f < 20 Hz), 

detrimental effects are observed in terms of rider comfort, vehicle wear, vehicular noise, 

rolling resistance, and tire-road friction. In the mega-texture regime, rolling resistance and 

vehicle noise become particularly significant. As the spatial frequency increases to the 

macro-texture range, tire-road friction becomes more significant. Thus, optimizing the 

surface texture requires a balance of sufficient friction, and minimal adverse vehicle impacts 

and costs. 
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Figure 2. Influence of texture wavelength on vehicle response. 

Current methods used to characterize surface texture, mainly rely on the mean profile depth 

(MPD). MPD provides a a two-dimensional representation of the surface texture (ISO 

13473-1 2004).  However, this parameter only provides averaged values for surface texture 

and does not have sufficient resolution to quantify the distribution of asperities at the 

pavement surface. A schematic of determination of MPD is provided in Figure 3Error! 

Reference source not found. Although the MPD is simple to measure and has shown some 

relationships to pavement friction, it has been recognized that knowing the distribution of 

surface asperities leads to improved methods for friction characterization. Spectral analysis 

techniques are suitable for quantifying the distribution and may improve upon MPD by 

capturing the texture distribution over a spectral scale encompassing multiple texture 

regimes. The decomposition of the texture to smaller scales allows for better control of 

friction properties, based on this concept there is an opportunity include consideration of 

friction into the mix design process by defining the impacts of aggregate and mixture 

volumetric properties on mixture surface properties. A simple method for measuring the 

distribution is not yet available. 
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Figure 3. Illustration of mean profile depth. 

 

FRICTION CHARACTERIZATION  

 

Friction is defined as the force that acts opposite to the direction of motion imparted by the 

pavement surface on a rotating tire. A rolling or sliding tire will generate friction as it moves 

across the pavement surface. In general, higher levels of friction correspond to greater 

operator control of the vehicle (Hall et al 2009). The friction coefficient μ represents the 

quotient of the tangential friction force F and the vertical load Fw imparted from the vehicle 

to the axle and wheel hub. Figure 4 shows two idealized tire-roadway interaction diagrams 

and depicts the forces on a rotating tire due to contact with the pavement surface in free-

wheeling and constant-braked configurations. 
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Figure 4. Tire free-body diagrams. 

Friction at the tire-pavement interface comprises two friction components in longitudinal 

and tangential directions. Longitudinal friction forces manifest in the direction of travel in 

two ways (Hall et al 2009). When the tire is free to roll and no brakes are applied, the 

relative speed between a point on the tire circumference and the pavement is zero. This is 

referred to as the slip speed S. With the brakes applied, the slip speed increases from zero to 
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the speed of the vehicle. Meyer described this relationship mathematically as follows 

(Meyer 1982): 

 

                                                                                                           (1) 

 

 

Where:  S Slip speed, mi/hr. 

  V Vehicle speed, mi/hr. 

  VP Average peripheral speed of the tire, mi/hr. 

  ω Angular velocity of the tire, radians/sec. 

  r Average radius of the tire, ft. 

 

Two conditions are worth noting. With no brakes applied, the average peripheral speed of 

the tire VP equals the vehicle speed V. In this case the slip speed S is zero. With brakes fully 

applied, the peripheral speed of the tire VP is 0 such that the vehicle speed V equals the slip 

speed S. Slip speed is important because it will be one of the parameters accounted for in the 

friction models and indices that will be presented in following sections. Because the slip 

speed is strongly related to macro-texture, there now exists a means to connect vehicle 

dynamics with friction characteristics. 

 

Figure 5 depicts the relationship between the friction coefficient and tire slip. In the free-

rolling condition, the coefficient of friction approaches zero and increases to a critical peak 

friction value as the tire slip and braking increases. Beyond the critical slip value, the 

coefficient of friction diminishes to a terminal value as the fully-locked, full-sliding 

condition is reached (Hall et al 2009, Henry 2000). 
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Figure 5. Friction coefficient and tire slip relationship. 

A second source of friction originates from lateral friction forces. Lateral friction forces 

manifest as a vehicle turns, changes lanes, or compensates for cross winds or pavement 

cross-slopes (Hall et al 2009). The lateral friction force acts outward on tire tread elements 

and is counter to the centripetal force acting to pull the vehicle inward toward the center of a 

curve.  

 

Factors Affecting Friction 

 

Factors affecting friction can be divided into four categories which are pavement surface 

characteristics, vehicle characteristics, tire characteristics, and environmental conditions 

(Hall, et al., 2009; Rado, 2005). The focus of this study is to characterize the pavement 

surface characteristics (i.e. surface texture) using newly developed lab tests and analysis and 

developing relations between important pavement material and design factors with 

pavement surface texture and friction as result . Based on the literature review performed in 

this study the factors listed in Table 2 have been found to potentially affect surface friction. 

Factors mentioned in Table 2 are used to identify and prioritize factors entered into the 

analysis performed in the present work.  
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Table 2. Mixture Properties Affecting Surface Texture in Asphalt Pavements (Henry, 

2000; Hall, et al., 2009; Sandberg & Ejsmont, 2000; AASHTO, 1976; PIARC, 1995; 

Ahammed & Tighe, 2009 ) 

Property  Texture Range 

Nominal Maximum Aggregate 

Size (NMAS) 
Macro-Texture 

Mixture Coarse Aggregate 

Type (shape) 

Macro-Texture 

Micro-Texture 

Mixture Fine Aggregate Type 

(shape)  

Macro-Texture 

Micro-Texture 

Asphalt Binder Content Macro-Texture 

Aggregate Gradation Macro-Texture 

Mixture Air Voids Macro-Texture 

 

As shown in the Table 2, aggregate shape and texture are more important to control micro-

texture while gradation, mixture properties and compaction are mainly affecting macro-

texture. 

 

A significant amount of research has focused on tire and vehicle characteristics, with tire 

companies investing considerable resources in the interest of designing durable tires with 

efficient tread patterns. Vehicle and tire considerations are not the focus of this study, as this 

type of analysis necessitates use of finite element models to capture vehicle dynamics and is 

beyond the scope of this investigation. Rather, the focus here will be on how pavement 

surface characteristics affect friction and how to control pavement surface texture using 

current mix design procedures.   

 

Properties of materials used in pavements typically affect micro-texture and macro-texture, 

while construction techniques and pavement distresses typically affect larger texture 

wavelength regimes such as mega-texture and unevenness. If particular mix design 

parameters exhibit a significant effect on micro-texture and macro-texture properties, then 

the mix design can be controlled to achieve optimal levels of micro-texture and macro-

texture wavelengths as these regimes affect noise and friction.  

 

Friction number (FN)  

 

The friction number (FN) or skid number (SN) is the average coefficient of friction 

measured by a locked-wheel test device as specified in ASTM E274. Almost all states in the 

United States are using locked-wheel devices to evaluate friction. This method tests 

frictional properties for emergency braking without anti-lock braking systems. The method 

differs from side-force or fixed-slip methods in that the slip speed is equal to the vehicle 

speed, the wheel remains locked, and there is no rotation of the tire (Hall, et al., 2009). Tests 

can be conducted with ribbed tire or smooth tire at a range of speeds. The friction number 

(FN) is calculated as: 
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                                                                                                            (2)  

 

Where:  V Velocity of the test tire, km/hr. 

  μ Coefficient of friction. 

  F Tractive horizontal force applied to the tire, kg. 

            W Vertical load applied to the tire, kg. 

Friction Measurement Methods 

 

Friction measuring devices may be classified as devices operating at highway speeds and 

devices requiring traffic control (Hall, et al., 2009). Highway-speed friction test methods 

encompass locked wheel (ASTM E274), side-force (ASTM E670), fixed-slip (various 

ASTM standards) and variable-slip (ASTM E1859) test devices. Each of these devices 

utilizes a tow trailer or specially-instrumented vehicle. The test methods report various 

measurement indices, such as friction number (FN). The devices can be used for network-

level friction monitoring and field testing, though some devices are limited in their ability to 

measure curved sections and heavily damaged sections. The advantage of these devices is 

that they utilize full-scale tires at highway speeds, which gives a more accurate 

representation of friction performance of actual vehicle tires. Major disadvantages include 

the level of technical training required, cost, and sensitivity to surface irregularities such as 

potholes and cracks. 

 

Rather than using highway-speed devices, this study makes use of devices requiring traffic 

control. While stopping distance measurements (ASTM E445) and deceleration rate 

measurements (ASTM E2101) are typically used for crash investigations, other examples of 

test methods requiring traffic control are more applicable to this investigation. One portable 

tester used to measure friction characteristics is the Dynamic Friction Tester (DFTester). 

Portable devices used to evaluate surface texture are the circular track meter (CTM), and a 

stationary linear profiler (SLP). 

 

 

Test Methods 

 

This study focuses on the results of three macro-texture characterization methods which is a 

volumetric method, and two laser methods, one of which is circular while the other is linear. 

For macro-texture (0.5 mm < λ < 50 mm) evaluation, the Circular Track Meter (CTM) 

provides estimates of high-speed friction potential. The next device, the Stationary Linear 

Profiler (SLP), has been modified and used extensively in this study, as will be described in 

detail. It was selected as the most promising method to use to evaluate both macro-texture 

and micro-texture in both the laboratory and field.  

 

Circular Track Meter (CTM) 
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The Circular Track Meter (CTM) is a non-contact laser device used to analyze pavement 

macro-texture. ASTM offers specifications for usage of the device (ASTM E2157 2009). 

Manufactured in Japan by the Sunny Koken Company, the charge-coupled device (CCD) 

laser profiler is mounted on a rotating arm at a fixed location above the surface. A laptop 

computer controls the device operation. After initiating a measurement, a direct current 

(DC) motor drives the arm and traces a circle with a diameter of 284 mm on the pavement 

surface. Once the measurement is complete, software algorithms partition the segment into 

eight sections. Mean profile depth (MPD) and root mean square (RMS) values are computed 

for each section. The CTM reports 1024 points, a convenient number of points for applying 

Discrete-Time Fourier Transform (DFT) methods to determine the texture spectrum. Figure 

6 shows the device. Applied Pavement Technologies, Inc. provided the CTM equipment to 

researchers for evaluation. 

 

 
Figure 6. The Circular Track Meter (CTM) is used to evaluate pavement macro-

texture. 

The CTM delivers a precise estimate of pavement macro-texture indicators, including mean 

profile depth (MPD) and root mean square (RMS) values. The precision value for eight 

measurements on same surface is 0.03 mm (ASTM E2157 2009). The device also collects a 

sufficient number of data points for spectral analysis, which will be explained in subsequent 

sections. Furthermore, it is a non-destructive test method and thus can be used for evaluation 

of in-service pavements. . 

 

Despite all advantages, the CTM also has a few disadvantages. The cost of the CTM may 

prohibit laboratories or state highway agencies from investing in this device. More training 

is needed to operate this device compared to other devices. Due to the static nature of the 

device, traffic control is required for field evaluations. The device also requires samples 

with a minimum physical size of 600 mm by 600 mm. The required sample size limits 

laboratory evaluations to those labs with access to slab compaction or similar devices. 

 



14 

 

Many researchers have experimented with the CTM device. Flintsch et al compare macro-

texture measurements of three laser devices and the sand patch method (Flintsch, et al., 

2003). The experimental design encompassed the Virginia Smart Road, in-service 

highways, and airfield surfaces. Of the three laser devices evaluated, the CTM demonstrated 

the highest correlation to volumetric macro-texture measurements. Hanson and Prowell 

compare CTM MPD measurements with Sand Patch Method (SPM) MTD measurements at 

the NCAT Test Track for a variety of pavement surfaces (Hanson & Prowell, 2004). Results 

indicate strong relationships between CTM and SPM values. Perhaps surprisingly, the study 

found that CTM measurements are more variable than SPM results and suggests that less 

technician skill is required to operate the CTM compared to other macro-texture 

measurement devices. 

 

Stationary linear profiler (SLP) 

 

Improved surface characterization technologies utilizing simple laser-based profiling 

techniques are effective for quantifying texture properties (Losa et al 2005, Losa et al 2007, 

Losa & Leandri 2010). Linear profiling methods have been used on pavement surfaces for 

the past 50 years. Use of profiling methods, and particularly methods that can be used at 

highway speeds, have grown in recent years as highway agencies have recognized the need 

for improving pavement management strategies and assessing both structural and functional 

distresses. Profilers have been used extensively to measure surface roughness. More 

recently, linear profiling methods have been used to estimate frictional properties. As an 

extension of these concepts, signal processing theories it is possible to define two-

dimensional texture profiles to evaluate the texture spectrum.  

 

Laser profilers are differentiated as mobile profilers and stationary profilers in International 

Organization for Standardization (ISO) standards. Mobile profilers are non-contact devices 

attached to vehicles that are used to measure pavement surface profiles at highway speeds. 

Stationary profilers are also non-contact devices but they can be used in field and laboratory 

environments while remaining static. A stationary linear profiler (SLP) is the primary device 

used here to evaluate macro-texture and for comparison to other macro-texture and micro-

texture measurement methods. Specifications for both mobile and stationary laser profilers 

are outlined in a series of ISO standards (ISO 13473 2002/2004/2008). ASTM standards 

provide less direction, though methods are given for calculating mean profile depth (ASTM 

E1845 2009). 

 

The SLP assembly used in this study, shown in Figure 7, was developed as part of the 

Asphalt Research Consortium project (Miller, et al., 2012). As with the CTM, the SLP 

measures the pavement profile using a laser, though the profile is linear rather than circular. 

Using analysis techniques outlined in ISO standards (ISO 13473-4 2008), MPD and root 

mean square (RMS) values are calculated, and used to determine the power spectral density 

(PSD). The PSD is a mathematical representation of the signal power distribution as a 

function of frequency. Spectral analysis methods based on signal processing techniques 

allow for characterization of the surface asperity distribution. Applying Discrete Fourier 

Transform (DFT) methods to surface profiles allows for calculation of PSD and texture 
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level distributions. Methods for acquiring and analyzing profile data will be detailed in the 

next chapter. 

 

 
Figure 7. A Stationary Linear Profiler (SLP) evaluates micro-texture and macro-

texture (Miller, et al., 2012). 

 

Regression Analysis Approach 

In this study, regression analysis was performed using Minitab16. MPD derived from SLP 

output was related to mixtures’ volumetric and design properties, including bulk specific 

gravity (Gmb), air voids, binder content (Pb), and aggregate gradation properties including 

the nominal maximum aggregate size (NMAS), and gradation Weibull parameters, κ and λ. 

Weibull distribution which used to show the cumulative percent passing size of aggregates, 

has the form as shown in equation 3. 

 

                
 

 
    

                                                                                          (3) 

 

where variable x is the aggregate size in millimeters, κ is the shape factor and λ is the scale 

factor (Masad, et al., 2009). A sample of cumulative Weibull distribution is shown in Figure 

8. For this figure, the data points are the actual aggregate gradation while the curve is the 

Weibull distribution fitted to the data points for which κ is determined as 1.48 and λ is 1.59. 
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Figure 8. Cumulative Weibull distribution for aggregate gradation. 

 

The statistical/regression models were developed for a wide range of selections of the 

aforementioned parameters. 

 

Artificial Neural Networks (ANN) Approach 

Researchers have used Artificial Neural Networks in many different aspects of civil 

engineering, particularly for situations in which the relationship between parameters 

becomes complicated and nonlinear. ANN is mainly used when proper relationships have 

not been established between input variables, large numbers of input variables exist, and the 

relationships between input and output of the model is rather complex. Thus ANN was 

deemed a suitable tool to model the relationship between surface texture, friction, and the 

mixture design parameters that can potentially affect these properties.  ANN has been 

previously used in a number of pavement engineering studies, especially with regards to 

modulus back calculation and estimation (Bing, et al., 2002; Sakhaeifar, et al., 2010; Zofka 

& Yut, 2012). 

 

ANN is a method mimics the neural system of human body means having several nodes and 

neurons. In this method, there are some layers (one input layer, several hidden layers and 

one output layer) containing nodes as shown in the Figure 9. These nodes in layers are 

connected to each other using lines. Each line is assigned a “weight” as an indicator of the 

effectiveness of that parameter in the output calculation. Several transfer functions are 

applied to input data to provide the output. Basic transfer functions can be listed as linear, 

exponential and hyperbolic tangent. Transfer functions are selected to minimize the number 

of the nodes in hidden layer because more nodes in the hidden layers results in more 

complicated network.  
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Figure 9. Artificial Neural Network diagram. 

 

The model which is developed using ANN has three logical steps:multiplication, summation 

and activation. The dataset is randomly divided into two parts, 80 % of data are used for 

training the network and the remaining data is used to verify the developed network 

efficiency. Training the network will continue until the sum of squared errors between the 

model-predicted output and the experimentally measured output is minimized. The result of 

a network can be shown as a mathematical model contains weights, input, output, transfer 

function and bias. 

From mathematical point of view, the ANN model can be shown as:  

 

                 
 
         )                                                                            (4) 

 

Where: 

 m is the number of connection lines as shown in FIGURE 9, 

        is input value in discrete time k where i goes from 0 to m, 

        is weight value in discrete time k where i goes from 0 to m, 

 b is bias, 

 F is a transfer function, 

 y(k) is output value in discrete time k. 

 

More detailed information about ANN models can be found in several researches (Gurney, 

1997; Kröse & Smagt, 1996; Rojas, 1996). 
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CHAPTER 3. METHODS AND MATERIALS 

In this chapter, the analysis methods used to evaluate pavement surface texture and friction 

characteristics are described. Data processing techniques related to analysis of the texture 

spectrum are also discussed.  Additionally, the field and laboratory materials used in the 

evaluation are mentioned. 

 

DATA ACQUISITION METHODS 

 

This study utilizes the results of three devices for measuring texture and friction. Friction 

devices are typically divided into those operating at highway speeds and those operating at 

low speeds or remaining stationary (Hall, et al., 2009). The texture devices are typically 

used to cover two primary texture ranges: macro-texture and micro-texture. Table 3 

summarizes the devices, applicable test environments, and texture ranges. 

 
Table 3. Summary of test devices, location, and texture range 

Device Location and Type Texture Range 

CTM 

(Circular Track Meter) 
Field Texture Macro-texture 

SLP 

(Stationary Linear Profiler) 
Field & Lab Texture 

Macro-texture, 

Micro-texture 

 

SLP Device Description 

 

 

The SLP relies on the principle of optical triangulation to measure surface texture 

characteristics. A test frame supports the laser and draw-wire sensor devices on one end and 

a small motor at the other. The laser sensor projects a laser beam on the sample surface, 

which manifests as a red spot on the sample. The laser beam is diffusely reflected to an 

optical receiver array, which translates the light intensity of the reflected beam into an 

analog voltage signal that is then transformed into an amplitude measurement. The SLP 

triangulates surface amplitude as a motor pulls the laser assembly across the test frame at 

low speeds. Amplitude is coupled with horizontal displacement via the draw-wire sensor to 

define the surface profile. The combined amplitude-displacement measurement is registered 

in the computer’s data acquisition card, which is transmitted to the software interface. 

 

The laser used in this study is a CCD-type laser, model ILD 1700-40. Dimensions for the 

laser sensor are shown in Figure 10. Profiles are obtained from several different orientations 

in laboratory and field environments to reduce the effects of texture orientation on the 

overall response. Several parameters define the laser sensor’s operational characteristics. 

Measuring range, measuring rate, sampling rate, resolution and spot diameter are some of 

the parameters used to characterize a laser sensor’s operational capacity. Table 4 lists 
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relevant technical parameters related to the laser sensor’s operation. ISO documentation 

outlines the technical requirements of the laser, and the reader should refer to these 

specifications for exact requirements in terms of horizontal and vertical resolution, sampling 

rate, and measuring rate (ISO 13473-3 2004). Data analysis templates can be configured to 

account for the various laser specifications.  

 
Table 4. Summary of SLP Specifications 

Spot Diameter (μm) 210 

Measuring Range (mm) 40 

Measuring Rate (Hz) 1250 

Measuring Speed (mm/s) 37 

Measuring Interval (points/mm) 15 

Horizontal Resolution (μm) 4 
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Figure 10. Schematic diagrams of the ILD 1700-40 laser sensor. 
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The draw-wire sensor, also referred to as the displacement sensor or encoder, is configured 

to provide horizontal measurements at a fixed sampling rate.  These readings coupled with 

amplitude measurements obtained from the laser sensor provide a two dimensional texture 

profile.  In the test apparatus, the draw-wire sensor is physically attached to the laser sensor 

via a metallic cable that extends from the encoder housing as the laser sensor traverses the 

test frame. Care must be taken to ensure that the software is configured with the proper 

encoder settings for the particular laser model selected. Verification experiments can 

validate the accuracy of the laser sensor/encoder settings. The encoder model used in this 

research is a Micro-Epsilon WDS-1000-P60 sensor. 

 

The test frame is outfitted with several clamps that allow for easy height and span 

adjustment. Height adjustment is critical because it ensures that the laser operates within its 

measuring range, which for this laser sensor/encoder combination is 40 mm. Manufactured 

on the UW-Madison campus, the test frame is made of industrial grade aluminum railing, 

though other suitably rigid materials may also be used. The frame includes height adjustors 

to ensure that the frame is level prior to testing.  It is recommended to check that the frame 

is level and parallel to the roadway or laboratory mix surface by use of a hand level.  

Dimensions and specifications of the frame are available upon request. 

 

The motor controller consists of a power switch, travel rate dial, and activation button. Low 

motor speeds and a lubricated rail are recommended to helpreduce vibrations of the laser 

and preserve the data integrity. A small piece of felt padding cushions the laser assembly as 

it retracts toward the encoder following data acquisition. Travel speed is regulated to ensure 

that motor operation does not introduce unnecessary vibrations to the laser sensor.  Speed is 

adjusted using the travel rate dial. The exact speed at which the motor pulls the laser sensor 

across the test frame defines the measuring speed and depends on travel rate dial setting.  

A standard power supply with adjustable voltage and amperage settings powers the laser 

sensor. The power supply is readily available commercially. Power settings for the laser 

sensor used in this research are limited to a maximum voltage of 24 V and a maximum 

current of 150 mA. Power requirements may differ for other lasers, so manufacturer 

recommendations must be consulted prior to operation. The greatest risk lies in overloading 

the laser with excessive electrical current, which can burn out the laser sensor and render the 

device inoperable. Because the laser is wired directly into the terminals of the power supply, 

care must be taken to ensure that the wire leads are properly attached to positive and 

negative terminals to avoid shorting out the device. 

Additional data acquisition components are needed to couple laser sensor data with draw-

wire sensor data. Both the laser sensor and draw-wire sensor feed into a PCI card that 

synchronizes data acquisition from the independent analog signals. The PCI card is housed 

internally in a desktop computer possessing appropriate DAQ card bays. Related software 

packages access the synchronized data for display and storage. The equipment manufacturer 

Micro-Epsilon developed the integrated software package that allows the PCI card to record 

laser/encoder displacement information. This research used the IF 2004 Encoder ILD 1700 

V0.6 software application. A screenshot of the software application is shown in Figure . 
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The software is relatively simple to use, though special attention must be given to a few key 

fields to ensure proper data collection. The most convenient format for data output files is 

*.txt files. These files are easily opened in spreadsheet and analysis software programs. Data 

acquisition is triggered by the software upon activation of the motor controller and is 

terminated once the measurement is complete.   

 
Figure 11. A screenshot from the software application used to collect SLP data. 

Field evaluation requires a few additional components to account for a lack of alternating 

current electricity in field environments. These components supplement all of the 

components described previously. For power, a 12 V battery is used to power the laser 

sensor, motor controller, and data acquisition components. Deep-cycle batteries or similar 

types are recommended due to their extended discharge time. A battery charger should be 

used to charge the 12 V battery before and after field evaluations. A power inverter 

transforms 12 V direct current power from the battery to the 110 V alternating current 

needed by the test equipment. Because the PCI card requires a desktop computer for 

operation, a laptop could not be taken into the field for field evaluations. Future 

consideration could be paid to models that utilize smaller, portable PCI cards to enable 

efficient setup of data acquisition components and devices. 

 

 

SLP Data Processing 

 

After recording the raw surface profile with the SLP, several transformation algorithms are 

applied to the profile data. Data is imported into analysis spreadsheets as a *.txt file. Each 

file has two columns: the displacement count registered by the draw-wire sensor; and the 
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amplitude measurement recorded by the laser sensor. Removing invalid points, known as 

drop-outs, is the first priority in processing the profile (Haykin and Van Veen 1999). This is 

achieved in a three-step process. First, a device-dependent scale factor is applied to the raw 

profile data. In this case, the scale factor is 4. The scale factor is related to coordinate the 

measuring range of the laser and the capabilities of the software.  In this case, the measuring 

range of the laser sensor is 40 mm and the software can accommodate a measuring range of 

10 mm,thus the profile data must be scaled by a factor of 4. Applying this scale factor 

ensures that the analysis accounts for proper measuring range. In the second step, the profile 

is inverted to obtain a correct orientation. Once the profile is correctly oriented, the third 

step includes removing the drop-outs from the profile by applying a numerical drop-out 

threshold requirement. The occurrence of drop-outs increases with shiny surfaces and 

porous surfaces. After removing drop-outs, the profile is considered to be conditioned. 

 

Conditioned data must satisfy the mathematical requirements of the Discrete Fourier 

Transform. Field data set is re-sampled at a 2-to-1 ratio to provide 2
12

 points or 4096 points. 

Resampling of laboratory data is not necessary, which utilizes 2
11

 points or 2048 points in 

the DFT analysis. Related sensitivity analyses indicate that resampling the field profile at a 

2-to-1 ratio does not affect the texture level response due to the sufficiently high horizontal 

resolution of the laser. Higher resampling ratios may adversely affect the estimation of 

micro-texture as the sampling interval approaches the micro-texture spatial limit of 0.5 mm. 

While the selection of 2
12

 points represents the maximum number of points allowed in 

Microsoft Excel’s Fourier Analysis package, other analysis packages such as Matlab may 

allow for a greater number of points to be processed and will increase data processing 

efficiency. In this study all analysis was conducted using Microsoft Excel spreadsheets. 

 

Figure 17 shows representative profiles of dense and porous pavements. Both profiles have 

been conditioned and are ready for the next sequence of analysis algorithms. Note that the 

horizontal scale is five times greater than that of the vertical scale to accentuate differences 

in the profile type. Clearly the porous profile exhibits greater deviations in the amplitude, 

whereas the dense profile shows smaller perturbations along the surface. Being able to 

capture the distribution of these profile deviations is a primary advantage of using texture 

spectral analysis methods rather than other macro-texture indicators like mean profile depth 

(MPD). The method allows for characterization of the relative proportion of peaks and 

valleys, whereas MPD values provide an average of the amplitude magnitude in two or three 

dimensions, respectively. Likewise, micro-texture measurement methods such as the BPT 

and DFT fail to capture the distribution of smaller spatial wavelengths. 
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Figure 11. Profiles of dense and porous pavements. 

Once the profile is conditioned and re-sampled, a second sequence of data transformations is 

applied. First, a least-squares fitting algorithm is used to achieve a slope of zero for the 

profile curve in a process known as slope suppression. Slope suppression eliminates a 

positive or negative profile slope that could affect the results of the DFT. Following slope 

suppression, the mean amplitude or y-intercept of the profile is set to zero in a process 

referred to as offset suppression. Following slope- and offset-suppression, the profile is 

subjected to a windowing algorithm to reduce the signal amplitude to zero at the edges of 

the profile. Windowing reduces signal leakage at profile edges. In this case, a Split Cosine 

Bell Window is an appropriate window since the profile is less than 1 m in length (ISO 

13473-4 2008). Other windows are specified in related ISO standards and may be 

appropriate for other evaluation systems. Once the profile is windowed, the Discrete Fourier 

Transform can be applied to determine the texture level distribution. 

 

Using techniques outlined in related ISO standards, MPD values are calculated along with 

the power spectral density (PSD). The Discrete Fourier Transform translates the random 

surface profile into a series of complex sinusoidal waveforms. Coefficients arising from the 

Discrete Fourier Transform are associated with complex sinusoids of different frequencies 

(ISO 13473-2 2002). This series of waveforms forms the basis of the PSD, which defines 

the distribution of waveforms for the profile over a wide range of frequencies. The 

amplitude and texture level distributions originate from the power spectral density (PSD). 

The texture level distribution provides a more detailed metric by which to evaluate texture. 

This procedure follows the methods articulated by Losa et al and has been updated to meet 

the research needs of this study (Losa et al 2005, Losa et al 2007, Losa & Leandri 2010). 

 

The texture level distribution estimates the proportion of particular wavelengths in the 

profile, which can be attributed to aggregate and mixture properties and related to frictional 
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characteristics. These wavelengths are captured in spectral bands of different widths called 

octave bands. The center wavelength of each octave band is represented by the symbol λ. 

Octave bands are calculated as 2
n
, where n is an integer. For each octave band, the Discrete 

Fourier Transform calculates the root mean square (RMS) value of the surface profile 

amplitude, symbolized as aλ. A reference root mean square value (aref) of 10
-6

 m is assumed 

per the ISO 13473-4 standard. The texture profile level (LTX), which is measured in decibels 

(dB), is calculated as: 

 

           
   

 

    
 
                                                                                                          

 

Four profiles are recorded for each laboratory SGC sample and field testing zone. Individual 

profiles for each sample are averaged using a geometric mean formulation for a specified 

octave band according to the following equation: 

 

     
             

  
     
 

      
     
 

      
     
 

      
     
 

  

 
                                            

 

 

Once the mean texture level (     
      for a given octave band is known, texture parameters 

can be constructed from any combination of the octave bands. The series of octave bands 

encompassing the micro-texture and macro-texture wavelength ranges can be represented as 

LTX, 0.5-32. Note that the λ values indicated in this parameter correspond to the central 

wavelength in the octave band, though the actual bandwidth is characteristically larger since 

the limits of the octave band extend beyond this central wavelength. For the micro-

texture/macro-texture indicator LTX, 0.5-32, the band corresponds to wavelengths ranging from 

0.4 – 40.3 mm. The formula for calculating this texture parameter range is given in:  

                      
     
    

                                                                                           

 

   

 

 

Mean profile depth (MPD) values can be calculated from the profile by following the 

procedure articulated in ISO 13473-1. Using an evaluation length of 100 mm, a series of 

high-pass and low-pass filters are applied to the profile to remove low-frequency and high-

frequency content. The high-pass filter removes texture wavelengths greater than 100 mm. 

After high-pass filtering, a low-pass filter is applied to the profile to remove frequencies 

corresponding to texture wavelengths less than 2.5 mm. The evaluation length of 100 mm is 

divided into two equal halves. In each 50 mm section, the highest peak is determined. The 

MPD value represents the arithmetic average of the two peak values minus the average 

profile amplitude. 
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MATERIALS 

 

In this study, researchers selected field samples from the Wisconsin Highway Research 

Program (WHRP) and the Minnesota Department of Transportation pavement test track 

facility (MnROAD) for laboratory texture measurement and use of field friction data and 

measures. Additionally, data previously collected from a Wisconsin Highway Research 

Program (WHRP) project and as part of the Asphalt Research consortium was also used in 

the analysis and modeling effort conducted in the present study.  

 

Friction data from the CTM and Friction Number tests, as well as the corresponding mixture 

design information from 14 MnROAD cells were considered in the present study. Cores 

from a number of these sections were acquired and used for derivation of laboratory texture 

measurements using the SLP. The properties of the MnROAD sections considered in this 

study are shown in Table 5. 

 

 

Table 5. Characteristics and Properties MnROAD Sections and field cores 

MnROAD 

CELL/Section 

Bulk Specific 

Gravity (Gmb) VTM (%) NMAS (mm) 

1* 2.37 4.07 12.5 

2 2.34 4.23 12.5 

3 2.36 4.22 12.5 

4 2.37 4.39 12.5 

19* 2.34 3.53 12.5 

22 2.36 3.83 12.5 

24 2.36 3.66 12.5 

27 2.35 3.34 12.5 

31* 2.36 3.89 12.5 

33* 2.38 4.60 12.5 

34* 2.39 3.98 12.5 

77* 2.37 4.50 12.5 

86 2.02 19.90 12.5 

87 2.36 4.90 12.5 

 *Field cores tested in laboratory 

  

The cores from the WHRP study (Project ID 0092-12-02) contained reclaimed asphalt 

pavement (RAP) and warm mix additives. Samples consisted of three different NMAS and a 

single binder type. Sample characteristics for the field cores are given in Table 6. 
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Table 6. Characteristics of the WHRP (Project ID 0092-12-02) field core sample set 

Roadway 
Aggregate 

Type 

NMAS 

(mm) 

Design 

ESALs 

PG 

Grade 

RAP/RAS 

Content 

USH 41 Gravel 19.0 E-10 58-28 8% 

USH 41 Gravel 12.5 E-3 58-28 17% 

USH 41 Gravel 12.5 E-10 58-28 8.5% 

USH 41 Gravel 25.0 E-1 58-28 13% 

 

Additionally, data collected from an earlier Wisconsin Highway Research Program (WHRP) 

project and as part of the Asphalt Research consortium was also used in the analysis and 

modeling effort conducted in the present study. Sample characteristics for the field cores are 

given in Table 7 (WHRP0092-12-02, 2011). Samples originated from a variety of roadways 

from counties across Wisconsin. 

 

Table 7. Characteristics of the WHRP field core sample set 

Roadway County 
Aggregate 

Type 

NMAS 

(mm) 

Design 

ESALs 

PG 

Grade 

US 8 Oneida Gravel 12.5 E-3 58-28 

US 18 Iowa Limestone 12.5 E-3 64-22 

US 18 Milwaukee Limestone 12.5 E-3 64-22 

STH 32 Racine Limestone 19.0 E-3 64-22 

STH 33 La Crosse Limestone 19.0 E-1 58-28 

IH 39 Marquette Gravel 12.5 E-10 58-28 

IH 39 Portage Gravel 12.5 E-10 58-28 

US 41 Fond du Lac Limestone 12.5 E-30 64-22 

STH 44 Fond du Lac Limestone 12.5 E-1 58-28 

US 45 Langlade Gravel 12.5 E-3 58-28 

US 53 Chippewa Gravel 12.5 E-10 58-28 

US 53 Chippewa Gravel 19.0 E-10 58-28 

US 53 Chippewa Gravel 25.0 E-10 58-28 

US 53 Trempealeau Limestone 12.5 E-3 64-22 

STH 57 Brown Limestone 12.5 E-3 58-28 

STH 59 Waukesha Limestone 19.0 E-3 64-22 

STH 60 Richland Limestone 19.0 E-1 64-22 

STH 60 Washington Gravel 19.0 E-10 64-28 

STH 67 Waukesha Limestone 19.0 E-1 58-28 

STH 70 Vilas Gravel 12.5 E-1 58-28 

STH 77 Ashland Gravel 12.5 E-1 58-28 

STH 96 Waupaca Limestone 12.5 E-3 58-28 

STH 153 Marathon Gravel 12.5 E-3 58-28 

STH 181 Milwaukee Limestone 12.5 E-10 64-22 

STH 181 Milwaukee Limestone 19.0 E-10 64-22 

Note: US: US Highway. STH: State Trunk Highway, IH: Interstate Highway 
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Furthermore data collected during the ARC project from field site locations across Dane 

county was added to the dataset, as shown in Figure 12. Mix design information, site access, 

and material sampling assistance were provided by four local contractors. Researchers 

collected friction data at the project locations. Participating contractors largely dictated the 

location of field evaluations used in this dataset. 

 

 
Figure 12. Locations of field test sites in Dane County. 

Selected sites comprised a range of mixture design characteristics, which are expected to 

manifest in a wide spectrum of surface texture properties. At each field site, researchers 

used the five test methods described previously to evaluate pavement surface texture and 

frictional characteristics. These sites encompassed low-volume roads and parking lots in 

order to reduce traffic interruptions and to ensure the safety of the field evaluation crew. At 

each site, the field evaluation crew demarcated two data collection zones and followed 

standard American Society for Testing and Materials (ASTM) procedures to collect a 
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sufficient number of samples (ASTM E1911 2009, ASTM E2157 2009). Data collected 

from each zone is averaged to obtain an aggregated site value. CTM and SLP tests, among 

other tests, were conducted in these locations. 
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CHAPTER 4. RESULTS AND ANALYSIS 

 

Selection of Laboratory Texture Analysis Parameter 

 

An important prerequisite of input variables used for both statistical and artificial neural 

network (ANN) modeling to predict pavement texture/friction characteristics is statistical 

independence of the input variables. As previously discussed, the SLP provides three output 

parameters, the mean profile depth (MPD), LTX2-4, and LTX4-32 (as defined by equation 6). In 

order to make an appropriate selection of parameters to be used for modeling purposes in 

the present study, statistical correlations were developed between the aforementioned laser 

output parameters, as shown in Figure 13. The results show that strong statistical 

correlations exist between all three possible pairs of parameters, indicating that no more 

than one of these parameters is necessary to be used in any given modeling process. Thus 

MPD was selected for subsequent analysis and modeling purposes, in part due to the relative 

simplicity of establishing physical relationships between this parameter and friction and 

mixture design parameters. 

 

The relationship between laboratory measurement of pavement surface texture based on the 

mean profile depth parameter (MPD) (measured using the SLP device) and mix design and 

volumetric properties was assessed using regression analysis. This statistical model was 

based on predominantly aggregate-driven parameters (i.e. NMAS, κ, λ), resulting in a very 

good correlation between model predicted and the SLP-measured MPD values, (R-squared 

value of 78%), as shown in Figure 14. As it is shown in the figure, there are three points far 

from others. These points are porous asphalt mixtures. By removing these data the R-

squared is reduced to 60 %. It should be noted that by incorporating the data corresponding 

to porous mixtures, the effect of aggregate gradation characteristics is magnified due to the 

larger range of κ and λ values, thus when the porous mixtures data are removed and the data 

set is reduced to dense graded mixtures, the significance of gradation parameters is reduced. 

 

The magnitude of the statistical parameter, p-value, for each variable used in the regression 

model is an indicator of the significance of that variable, with values closer to zero 

indicating the highest significance while the significance of values approaching 1.0 is 

negligible. The P-values for factors used in regression analysis are shown in Table 8.  
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(a)            (b)  

 
(c) 

Figure 13. Assessment of statistical independence of Laser Profilometer output 

parameters. 

 

Table 8. values for the Statistical Model Parameters 

Predictor Coefficient Standard Error 

Coefficient 

T value P value 

Constant 9.467 4.040 2.340 0.036 

Gmb -3.197 1.115 -2.870 0.013 

Pb -0.356 0.315 -1.130 0.278 

NMAS 0.085 0.043 1.940 0.074 

κ 1.354 0.234 5.800 0.000 

λ -1.476 0.360 -4.100 0.001 
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The regression model equation is shown below:  

 

Laser MPD = 9.47 - 3.20 Gmb - 0.356 Pb + 0.0846 NMAS + 1.35 κ - 1.48 λ               (8) 

 

Where MPD is the mean profile depth in millimeter, Gmb is bulk asphalt mixture density 

(g/cm
3
), Pb is the binder percent, NMAS is the nominal maximum aggregate size in 

millimeter, κ and λ are the Weibull distribution parameters. 

 

 
Figure 14. Estimated MPD versus measured MPD from SLP device. 

 

Based on the p-value analysis, the model predictions are most dependent on the Weibull 

distribution parameters (κ and λ). These parameters are indicators of the shape of the 

gradation curve, thus the high significance of these variables indicates the close dependency 

of the pavement friction to the aggregate gradation. The positive coefficient of κ and the 

negative coefficient of λ in the model indicate that increasing κ and decreasing λ will result 

in higher MPD values and thus improved pavement friction.  

 

Higher κ values will result in gradations closer to a more one-sized gradation, and further 

from the maximum density line, while decreasing λ will generally result in finer gradation. 

With regards to the trend of λ, it hypothesized that what is important is how far the 

gradation curve is from the maximum density line, rather than the overall coarseness or 

fineness of the gradation. A gradation curve far from the maximum density line on the 

coarse side, will likely have a higher MPD compared to a gradation curve which is far from 

maximum density line on the finer side. To prove this hypothesis, the gradation curves of 

R² = 0.78 

R² = 0.60 

0 

0.5 

1 

1.5 

2 

2.5 

0 0.5 1 1.5 2 2.5 

E
st

im
a
te

d
 S

L
P

 M
P

D
 (

m
m

) 

Measured SLP MPD (mm) 

Dense Graded and Porous 

Dense Graded 

Equality 



33 

 

the mixtures in this study are compared with the maximum density line in Figure 15. It is 

observed that all gradation curves fall above the maximum density line. In such conditions 

decreasing the value of λ will result in curves further from the maximum density line (i.e. 

lower aggregate packing) and thus believed to provide a higher texture. This trend explains 

the appropriateness of the negative coefficient of λ in equation 8. 

 

 
Figure 15. Effect of λ on distance of mixture gradation curves from the maximum 

density line. 

Another aggregate gradation parameter of high significance in the regression model is the 

Nominal Maximum Aggregate Size (NMAS), which is the sieve size immediately above the 

first sieve retaining more than 10% of the aggregates. The positive coefficient in the model 

indicates that gradations with higher NMAS thus generally coarser gradations result in 

higher MPD and subsequently increase the texture. 

 

This model is also closely related to the bulk specific gravity (Gmb) which signifies the bulk 

asphalt concrete density including the air voids. Thus the negative coefficient of Gmb in the 

regression model indicates that a lower Gmb, which results in higher porosity, leads to higher 

MPD and texture consequently. 

 

Furthermore, a dependency also exists between Pb (i.e. binder content) and MPD, although 

the significance is relatively weaker than that of the gradation and density variables. The 

negative coefficient indicates that lower Pb will increase the expected texture, possibly by 

reducing binder film thickness around aggregates as well as reducing the aggregate packing 

level in mixture during compaction. 

 

To verify the results from the regression analysis, ANN modeling was performed using the 

same dataset. For this model, the input variables were selected as Gmb, Pb, NMAS, κ and λ 
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based on statistically significant contibutors to prediction of e MPD, predictions were 

compared to actual MPD values from laser measurements. The transfer function used in the 

hidden layer was selected to minimize the nodes in hidden layer, in this case the hyperbolic 

tangent function, as shown in equation 9. 

 

       
       

                                                                                                        (9) 

  

where x is the input (variable). 

 

The network model calibration or "training" data set consisted of 80 % of the data set, while 

the remaining 20% were randomly selected for use as model verification ("test" dataset), 

and thus were not used for model training. Model optimization was performed using the 

training data set to derive the weights of each node connection and the network bias values, 

as listed in Table 9. The optimized nodal parameters predicted the training output values 

with a high R-squared of 97 %. For model verification, the model was applied to the 

randomly selected test dataset which resulted in a relatively good R-squared value of 71 %, 

thus verifying the accuracy of the developed ANN model. 

 

Table 9. Weights of Each Nodes in ANN Model Output 

Nodes Weight Nodes Weight Nodes Weight 

N1L1-N1L2 1.7564 N3L1-N3L2 -0.0857 N1L2-N1L3 -3.4413 

N1L1-N2L2 2.2794 N3L1-N4L2 1.9725 N2L2-N1L3 3.4841 

N1L1-N3L2 -0.9449 N4L1-N1L2 2.9717 N3L2-N1L3 1.4798 

N1L1-N4L2 -0.2728 N4L1-N2L2 0.7685 N4L2-N1L3 -3.5754 

N2L1-N1L2 -1.0398 N4L1-N3L2 -1.5427 B1-N1L2 1.4369 

N2L1-N2L2 -3.7149 N4L1-N4L2 -4.6293 B1-N2L2 0.2504 

N2L1-N3L2 0.0439 N5L1-N1L2 -0.1939 B1-N3L2 0.2228 

N2L1-N4L2 -1.3159 N5L1-N2L2 -1.5465 B1-N4L2 -1.2515 

N3L1-N1L2 -0.7391 N5L1-N3L2 0.587 B2-N1L3 0.5153 

N3L1-N2L2 2.8365 N5L1-N4L2 1.4941 
  

 

Relating Field Friction Tests to Laboratory Laser Measurements 

In order to develop a relationship between field and laboratory friction measures, the smooth 

tire friction number (FN) measured at 65 km/hour was used. Field measured values of CTM 

and SLP MPD is used to develop relation between texture measurement results and friction 

(i.e. FN). Using this data and the developed database in this study, the relationships shown 

in Figure 16 are observed. This leads to the use of a three-step process for relating SLP 

measured MPD to field FN, as is discussed below. 
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(a)       (b) 

Figure 16. (a) Relationship between CTM MPD from field and SLP MPD from 

laboratory; (b) Relationship between smooth-tire Friction Number from field and 

CTM MPD. 

 

First using the strong relationship between CTM-measured MPD from field and the SLP-

measured MPD from laboratory compacted loose mix samples developed in Figure 16(a), 

equation 10 was derived, by setting a zero intercept: 

 

                              (10) 

 

Where: 

 CTM MPD is the mean profile depth (mm) measured using the CTM in the field, 

 SLP MPD is the mean profile depth (mm) measured using the laser profilometer in 

the laboratory. 

 

In the second step, a significant nonlinear relationship was established between FN and the 

CTM MPD (Figure 16(b)), resulting in equation 11: 

 

                                  (11) 

 

Where: 

 FN is the smooth-tire friction number from field measurements, 

 CTM MPD is the mean profile depth (mm) measured using the CTM in the field. 

 

Finally by combining the two relationships, laboratory SLP MPD measures were directly 

related to the field FN results. The resulting relationship is shown in equation 12: 

 

                                  (12) 
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Where: 

 FN is the smooth-tire friction number from field measurements, 

 SLP MPD is the mean profile depth (mm) measured using the laser profilometer 

in the laboratory. 

 

The relationship derived in equation 12 shows how laboratory measures can be directly 

related to field friction values, with the positive coefficient of the SLP MPD parameters 

indicating that increasing texture mean profile depth will results in increased field friction. 

Furthermore, extending the direct strong relationships observed in Figure 13(a) and (b), it 

can be further inferred that increasing LTX2-4 and LTX4-32 will also result in increasing field 

friction numbers. Thus using the relationships developed in this study in which mixture 

design parameters (i.e. volumetric and aggregate gradation properties) were related to 

laboratory texture measures, one may consequently adjust the pavement mixture design in 

the laboratory to achieve target texture and field friction measures. 
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CHAPTER 5. FINDINGS AND RECOMMENDATIONS 

 

SUMARY OF FINDINGS 

In this study, statistical and artificial neural network modeling was performed using surface 

texture and friction parameters measurements from laboratory- and field-based devices 

including the Stationary Laser Profilometer (SLP), Circular Track Meter (CTM) and 

Locked-wheel smooth tire device. The following findings have been observed: 

 Using statistical analysis and artificial neural network modeling, mixture design 

parameters (i.e. volumetric and aggregate gradation properties) could be related to 

laboratory texture measurements (MPD). Therefore, knowing mixture design 

properties can lead to the estimation of road texture parameters. 

 It is shown that pavement texture is mainly controlled by aggregate gradation and 

mixture volumetric characteristics. Additionally, it was shown that increasing the 

distance of the gradation curve from the maximum density line is more important 

than the overall coarseness or fineness of the gradation in terms of increasing the 

expected texture. 

 Laboratory measured friction parameters (MPD) can be related to field friction 

values (FN) using regression analysis. 

 Utilizing the models developed in this study, by further investigation, mixture 

designers can have a guideline to estimate friction. 

 Models developed in this study showed that the measurements for field and 

laboratory compacted samples from SLP device can be used to estimate friction 

parameters. 

 

RECOMMENDATIONS FOR FUTURE WORK 

 

Because the models developed in this study utilized a limited data set, more mixes are 

needed to verify the models and validate the model coefficients. While the data set presented 

here is encouraging, disseminating the SLP device specification and analysis method to 

other research labs may improve the method.  

 

Additional model parameters may allow for improved estimation of texture characteristics, 

however, further experimentation on laboratory samples with controlled gradations is 

necessary for establishing clearer relationships between lab and field compacted texture 

characteristics. Additionally, a comprehensive study can show the effect of polishing and 

aggregate wearing in field on tire-pavement friction throughout pavement life. 
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APPENDIX A: SLP ANALYSIS METHOD TEMPLATES 

 
 

Figure 17. Screenshot. SLP raw data processing template. 
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Figure 18. Screenshot. SLP data conditioning template. 



45 

 

 

Figure 19. Screenshot. SLP data analysis template inputs. 
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Figure 20. Screenshot. SLP data analysis template outputs. 
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Figure 21. Screenshot. MPD data analysis template. 
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