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of major intermodal centers, and determination of barriers to improve freight performance. 

Currently state DOTs are at a very early stage in their development of freight performance 

measures (FPMs) to meet MAP-21 objectives. Some states are reviewing methodologies 

and appropriate data needs to assess their feasibility in developing FPMs. The goal of 

this project is to develop FPMs to meet MAP-21 objectives and apply the methodology in 

CFIRE region. 
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EXECUTIVE SUMMARY 
 

Freight transportation plays a significant role in national, state, and local economies, thus 

the performance of freight networks are of great concern. The projected rise in freight 

volumes only strengthens these concerns highlighting the need for Freight Performance 

Measures (FPMs) that can be used to monitor and identify issues within the transportation 

network. 

The current transportation bill, Moving Ahead for Progress in 21st Century (MAP-

21), indicates a freight plan to address freight congestion bottlenecks, identify critical 

major intermodal centers to enhance connectivity, determine barriers to improved freight 

performance, and explore the critical sections of the transportation network that need 

prioritization in resource allocation to enhance Freight Performance Measures (FPMs). 

GPS technology provides a new avenue for the estimation of FPMs that breaks 

away from costly data collection methods such as spot count data and roadside 

interviews. Researchers developed several approaches to analyze truck GPS data and 

estimate network and freight facility FPMs, but issues such as the device spatial error, 

identifying stops and trip ends, effect of non-recurring congestion still remain a challenge. 

The American Transportation Research Institute (ATRI) in collaboration with the 

Federal Highway Administration (FHWA) developed the Freight Performance Measures 

Web-Based (FPMweb) Tool in 2011 to estimate operating speeds in 25 interstate 

corridors using GPS data. Average speed values can be retrieved for a given state, 

corridor, year, month, day, and time of the day but the tool cannot be used to forecast 

truck volumes and speeds or provide any other FPMs. Other FPMs that can be obtained 

using GPS data are: travel time reliability, connectivity and resiliency of intermodal 

facilities, short term and long term travel time predictions, and temporal and spatial 

patterns of travel time/speed/volume variation. These FPMs vary by urban typologies 

(rural, suburban, and urban), by functional class (freeway, arterials), by trip type (short or 

long by distance), by origin and destination (II, IE, EI, EE)1 and by agency (private and 

public sector). 

The scope of this project was to evaluate the applicability of GPS truck data in 

developing FPMs at the local, regional, and state level using the CFIRE region as a case 

study. The major goals of the project are to: (a) provide a set of comprehensive FPMs 

that can provide insight into functioning of the multifaceted freight transportation network, 

and (b) examine the CFIRE freight network and compute FPMs using truck GPS data to 

address MAP-21 objectives.  

                                                           
1 Internal-Internal(II), Internal-External(IE), External Internal (EI), and External External (EE)   
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1. INTRODUCTION 

Freight transportation in the United States is expected to grow 23.5% until 2025 with 

associated revenues up to 72% according to the American Trucking Associations (ATA) 

and IHS Global Insight2. This increase in freight volume and its impact on the nation’s 

freight network has raised great concern over the anticipated network’s performance. The 

current transportation bill, Moving Ahead for Progress in 21st Century (MAP-21), 

acknowledges the significance of freight and its impact on national, state, local and 

regional networks and suggests a national and state strategic freight plan to assess and 

improve freight corridors’ condition and performance.  

The goals of this national freight policy are: (i) to invest in infrastructure and operational 

improvements that strengthen the contribution of the national freight network to the 

economic competitiveness of the United States; reduce congestion; and increase 

productivity; (ii) to improve the safety, security, and resilience of freight transportation;  

(iii) to improve the state of good repair of the national freight network; (iv) to use advanced 

technology to improve the safety and efficiency of the national freight network; (v) to 

incorporate concepts of performance, innovation, competition, and accountability into the 

operation and maintenance of the national freight network; (vi) to improve the economic 

efficiency of the national freight network; and (vii) to reduce the environmental impacts of 

freight movement on the national freight network (Moving Ahead for Progress in the 21st 

Century Act, 2012). MAP-21 indicates a freight plan to address freight congestion 

bottlenecks, identify critical major intermodal centers to enhance connectivity, determine 

barriers to improved freight performance, and explore the critical sections of the 

transportation network that need prioritization in resource allocation to enhance Freight 

Performance Measures (FPMs). 

FPMs estimation in the US has advanced with the utilization of truck GPS data by private 

and public agencies at the end of the 20th century. Before that, data collection has been 

a challenging task as it required spot count data and roadside interviews, methods that 

provided inadequate information and is usually time consuming and costly. Information 

provided by GPS data includes spatial information (X and Y coordinates), time stamp, 

heading, spot speed, and a unique truck identifier. Additional information can also be 

obtained such as weather conditions, distance, fuel consumption etc. Since the GPS 

utilization is a new concept in FPMs estimation there are still many obstacles to be 

addressed. Researchers developed several approaches to analyze truck GPS data and 

estimate network and freight facility FPMs, but issues such as the device spatial error, 

identifying stops and trip ends, effect of non-recurring congestion still remain a challenge.  

The American Transportation Research Institute (ATRI) in collaboration with the Federal 

Highway Administration (FHWA) developed the Freight Performance Measures Web-

                                                           
2 http://www.trucking.org/article.aspx?uid=41434598-4c60-444d-bc83-38f06ded539d 
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Based (FPMweb) Tool in 2011 to estimate operating speeds in 25 interstate corridors 

using GPS data. Average speed values can be retrieved for a given state, corridor, year, 

month, day, and time of the day but the tool cannot be used to forecast truck volumes 

and speeds or provide any other FPMs. Other FPMs that can be obtained using GPS 

data are: travel time reliability, connectivity and resiliency of intermodal facilities, short 

term and long term travel time predictions, and temporal and spatial patterns of travel 

time/speed/volume variation. These FPMs vary by urban typologies (rural, suburban, and 

urban), by functional class (freeway, arterials), by trip type (short or long by distance), by 

origin and destination (II, IE, EI, EE)3 and by agency (private and public sector). 

1.1 Project Purpose and Scope 

The scope of this project is to evaluate the applicability of GPS truck data in developing 

FPMs at the local, regional, and state level using the CFIRE region as a case study. The 

major goals of the project are to: (a) provide a set of comprehensive FPMs that can   

provide insight into functioning of the multifaceted freight transportation network, and (b) 

examine the CFIRE freight network and compute FPMs using truck GPS data to address 

MAP-21 objectives. 

1.2 Report Organization 

This report is organized as follows: Chapter 2 provides an up-to-date literature review on 

practices used in freight performance measures in the public and private sectors using 

truck GPS data. Chapter 3 describes the data collection and methodology used to analyze 

data in the CFIRE region followed data processing methodology in Chapter 4. Chapter 5 

presents the suggested FPMs and how they are computed for the study area. Chapter 6 

presents the linkage of the FPMs to workforce development. Chapter 7 presents the 

conclusions and recommendations for future research. 

  

                                                           
3 Internal-Internal(II), Internal-External(IE), External-Internal (EI), and External-External (EE)   
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2. LITERATURE REVIEW 

In the following paragraphs the reader will be introduced in a thorough literature review 

that has been conducted for each topic this study addresses. The literature review 

presented in this section summarizes past and contemporary published work and relevant 

studies conducted for: (i) road network reliability, (ii) truck parking demand analysis, and 

(iii) freight performance measures using truck GPS data. 

2.1 Road Network Reliability Literature 
Elementary studies on transportation network reliability appeared as early as the mid-

1940s, but the topic attracted greater attention during the 1990s (Murray, et al., 2007). 

Network reliability can generically be described as the probability that a network will be 

able to function when specific elements fail. Road network reliability should be treated 

differently from other networks (e.g., logical or cyber networks), due to the multi-

commodity flows and uniqueness of each trip’s origin and destination nodes (Bell, et al., 

1997) (Iida, 1999). Road networks are by definition both stochastic and dynamic and their 

functionality depends on a variety of factors that fluctuate with time (e.g., demand and 

supply, recurrent and non-recurrent events) and can generate instability. Nicholson and 

Du (Nicholson, et al., 1997) indicate two distinct sources of unreliability in transportation 

networks: arc flow variations and capacity variations. In the flow case, travel time varies 

with flow variations (given a constant link capacity), while in the capacity case (given a 

constant link flow), travel time can vary due to capacity variations. In reality, travel time 

variations occur due to the combined effects of both sources, but it is difficult to identify 

the separate effects of each source, per se. In road network reliability analysis, a number 

of uncertainty factors emerge, including the simplified network representation, the 

treatment of trips outside the study area, and the non-uniqueness of link reliability 

definitions (Bell, et al., 1997).  

Typically, network reliability analysis examines short-term changes, in demand and 

capacity (i.e., peak hour demand changes or capacity degradation due to incidents), in 

contrast to uncertainty network studies that consider long-term changes in demand and 

supply (e.g., network robustness and vulnerability, respectively). One challenging task 

(both for researchers and practitioners) has been the development of metrics and 

evaluation tools that can monitor and support network reliability decision making at all 

levels (planning, tactical, operational, real time). 

2.1.1 Network Reliability basics 
Let G = (V, E) be a stochastic graph where: V and E are finite sets of nodes and links 

respectively (Lucet, et al., 1999) (Rebaiaia, et al., 2013). The stochastic graph describes 

a network whose elements function or fail independently under a specific probability. 

Network reliability analysis aims to evaluate the global probability of functionality, given 
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the failure/function probabilities of each system element. Let G’ = (V’,E’), such that: V’⊂V 

and E’⊂(V’xV’)∩E be subgraphs and G’’ = (V, E’’) such E’’⊂ E partial graphs.  

The elements of a network can have either a function or fail state only, thus the Boolean 

cardinality that defines the element states is equal to 2 and there are 2n+m possible 

network states, (n = |V|, m=|E|). It should be noted that for typical road network analysis, 

possible network states are reduced to 2m as nodes are considered to function at all times 

(perfect nodes). A path P can be defined as a chain μ = (x1,…,xk+1) of links (where 

x1,…,xk+1, are the nodes those links connect) in which the end point of a link i is the start 

point of link i+1. Often it is written as μ(x1,xk+1). To have a connected graph, between any 

two nodes x, y ∈ V, a chain μ(x,y) must exist. Similarly, a cut set C is a set of links such 

that when they all fail the system fails as well. Accordingly, a minimal path or minpath can 

be defined as a path with the minimum required links to keep a pair (or set) of nodes 

connected (functioning system) and a minimal cut set or mincut as a set of minimum 

required links to disconnect a system.  

Reliability can be estimated for different numbers of terminals (i.e., origin and destination 

nodes).  K-terminal reliability is defined as the probability that every node that belongs in 

K⊂V is connected with all other nodes in K. All-terminal reliability is defined as the 

probability that every node in the network is connected to all other nodes. In general, 

network reliability evaluation problems, both deterministic and stochastic (Rebaiaia, et al., 

2013) (Frank, et al., 1971) (Hwang, et al., 1981) fall under the NP-complexity (hard or 

complete) category (Rebaiaia, et al., 2013) (Rosenthal, 1974) (Rosenthal, 1977). Even in 

cases of K=2, the problems are considered as #P-complete i.e., numbered P-complete 

(Rebaiaia, et al., 2013) (Valiant) (Brecht, et al., 1988).  

2.1.2 Main Reliability Definitions 
Road network reliability can be generically defined either as “connectivity” or as “travel-

time” reliability (Bell, et al., 1997) (Mine, et al., 1982).  The major definitions identified in 

the literature are: i) Connectivity (or terminal) reliability (Bell, et al., 1997) (Mine, et al., 

1982) defined as: “The probability that there exists at least one path without disruption or 

heavy delay to a given destination within a given time period”, ii) Travel-Time Reliability 

(Bell, et al., 1997) (Mine, et al., 1982) defined as: “The probability that traffic can reach a 

given destination within a stated time”, and iii) Capacity Reliability (Chen, et al., 1999), 

defined as: “The probability that the network can accommodate certain traffic demand on 

the concept of network reserve capacity”.  Other, less commonly observed, reliability 

definitions from the literature (Murray, et al., 2007) (Watling, 2008) include: Behavioral 

reliability, Travel-time budget reliability (Lo, et al., 2000) (Lo, et al., 2006), Travel demand 

satisfaction reliability (Zhang, et al., 2001), and Road vulnerability (Berdica, 2000) 

(Berdica, 2002). 
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2.1.3 Connectivity Reliability: Basic Concepts  

Link and System Reliability 
Reliability ra of link α, can be defined as the expected value of a state binary (0-1) variable 

xα, that equals 1 if link α is not disrupted/congested and zero otherwise (Mine, et al., 

1982). System (of links) reliability R, can be defined similarly by the expected value of a 

“structure function” φ(x), that can take values of one or zero, if the system is functioning 

or is congested/disrupted, respectively. Link and system reliability are given by the 

following equations:  

rα = E{xα}, (1) 

R = Pr(φ(x)=1)=E{φ(x)}, (2) 

In simple link formations (serial or parallel as shown in Figure 1), reliability can be 

estimated easily, given link function/failure probabilities using equations 3 and 4. 

 

Figure 1 Serial and Parallel System of "q" Links  
Source: Bell and Iida (1997) 

Series system reliability: 𝑅 = E {∏ x𝑖
𝑖∈𝑆

} = ∏ 𝑟𝑖
𝑖∈𝑆

 (3) 

Parallel system 
reliability: 

𝑅 = E {(1 −  ∏ (1 − x𝑖
𝑖∈𝑃

))} =  (1 −  ∏ (1 − 𝑟𝑖
𝑖∈𝑃

)) (4) 
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Reliability Evaluation 

Two main categories of connectivity reliability evaluation approaches have been 

proposed in literature: topological methods and enumeration methods. The first category 

is based on topological methods that involve the use of the reduction techniques, the 

factoring theorem (which is the basis for a class of K-terminal reliability algorithms), and 

decomposition (Rosenthal, 1977) (Satyanarayana, 1982) (Wood, 1985) (Wood, 1986). 

Reduction techniques aim to reduce the network size and produce (an easier to evaluate) 

equivalent network in terms of reliability.  Decomposition methods aim to decompose the 

network into smaller fragments whose reliabilities are integrated into a global network 

reliability value.  

The second category is comprised of enumeration methods and is subcategorized into 

state and path-cut set enumeration methods. State methods enumerate all the possible 

stochastic graph states keeping the smaller set between those that allow network 

functionality and those that lead to failure. Path-cut set methods enumerate either minimal 

paths or cuts to provide Boolean expressions and then to estimate this expressions 

probability (Lucet, et al., 1999). To convert Boolean expressions into probabilities one can 

use the inclusion-exclusion formula (also called Poincaré’s Theorem) or the sum of 

disjoint products. Next we briefly present each method. 

2.1.3.1 Exact Methods 

Combination Method 
The combination method (Bell, et al., 1997) is a simplified decomposition procedure, 

applicable when a system can be expressed as a combination of series and parallel 

systems, Global reliability can then be estimated by combining the estimated reliabilities 

of all subsystems (i.e., using equations 3 and 4). The combination method allows direct 

estimation of the system reliability but complexity increases if a link appears more than 

once in the equivalent transformation (use of Boolean algebra is required). 

Factoring Methods 
Factoring methods (Rubino, 1998) are based on the link contraction concept. The idea is 

to “merge” the two vertices of link i and generate a new graph 𝐺𝑖
𝑐 (contraction graph) that 

has one less node and link, than the initial graph G. If, on the other hand, link i was just 

deleted, this would result in a (deletion) graph 𝐺𝑖
𝑑, which has the same nodes with initial 

graph G, but one edge less. For 2-terminal reliability factoring is based on the following 

equation: 

𝑅𝑠,𝑡(𝐺) =  𝑟𝑖𝑅𝑠,𝑡(𝐺𝑖
𝑐) + (1 − 𝑟𝑖)𝑅𝑠,𝑡(𝐺𝑖

𝑑) (5) 
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where: ri is the reliability of link i and 𝑅𝑠,𝑡(𝐺), 𝑅𝑠,𝑡(𝐺𝑖
𝑐) and 𝑅𝑠,𝑡(𝐺𝑖

𝑑), are the reliabilities of 

the initial, contraction and deletion graphs respectively. Equation 5 can be generalized 

for K-terminal reliability, as well. 

Decomposition Methods 
Decomposition methods (Lucet, et al., 1999) decompose systems to subsystems with 

reliabilities easier to estimate. Global reliability is found by composing these smaller 

subsystem reliabilities. The basic principle of decomposition is to split a graph G into two 

subgraphs L and H separated by an articulation vertex (simple case) or a separating 

boundary set F. The articulation vertex (or set of vertices F), disconnects L from H and 

reliability of graph G can be estimated as:  

R(G) = R(H)∙R(L) (6) 

For graphs that L is separated from H with a boundary set F, system reliability can be 

estimated by the formula: 

𝑅(𝐺) = ∑ Pr(𝐻𝑖) Pr( 𝐿𝑗)

𝐻𝑖,𝐿𝑗 / 𝐻(𝐻𝑖) ⋃ 𝐿(𝐿𝑗) 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 

 
(7) 

where: Hi and Lj are the sets of states of subgraphs H and L respectively 

The reader is referred to the literature for a detailed discussion on decomposition 

algorithms for network reliability estimation (Lucet, et al., 1999) (Rosenthal, 1977) 

(Rubino, 1998) (Shogan, 1978) (Nakazawa, 1981) (Carlier, et al., 1996). 

Enumeration Methods 

Enumeration methods (Lucet, et al., 1999) can be categorized into state and paths or cuts 

(also known as path–and–cut) enumerations, for minimal paths and minimal cut sets, 

respectively (as described in the Network Reliability Basics section). For more information 

on enumeration methods and algorithms, than the information given in the next sections, 

the reader is referred to the literature (Wood, 1986) (Carlier, et al., 1996). 

State Enumeration Method 
The basic state enumeration principle estimates graph reliability by enumerating all the 

possible states of a stochastic graph and keep the smaller set between those that allow 

functionality and those that do not. For a stochastic graph G reliability can be estimated 

as: 

R(𝐺) = ∑ Pr(𝐺𝑖) 

𝐺(𝐺𝑖)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

= 1 − ∑ Pr(𝐺𝑖) 

𝐺(𝐺𝑖)𝑓𝑎𝑖𝑙𝑠

  (8) 
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For a network comprised of m links, complete state enumeration requires the evaluation 

of 2m states. 

Path-and-Cut Method 
The path-and-cut method is more practical (to state enumeration) as reliability can be 

estimated from minimal paths (minpaths) or minimal cut sets (mincuts), depending on 

which are fewer on the corresponding graph, by estimating the probability of Boolean 

expressions. When selecting to use minpaths, the path enumeration method estimates 

all minpaths that allow network functionality and reliability is equal to the probability that 

there exists at least one functioning minimal path. The cut set enumeration method 

estimates all mincuts that lead to network failure. To better understand the path-and-cuts 

method a small 2-terminal network reliability example is presented next (Bell, et al., 1997).  

 

Figure 2 System Equivalent Transformations 
Source: Bell and Iida (1997) 

The initial network shown in Figure 2 can be transformed (Bell, et al., 1997) (Lucet, et al., 

1999) to an equivalent series system in parallel or to a parallel system in series. Minpath 

enumeration will lead to the equivalent series system in parallel. If one of the 

(enumerated) minpaths (1, 2), (3, 4) or (1, 5, 4) is functional, then the whole system is 

functional as well. Mincuts enumeration will lead to the equivalent parallel system in 

series. If one of the four mincuts (1, 3), (3, 4), (1, 4) or (2, 5, 3) is not functional, then the 

whole system is not functional as well. In general , if the total number minpaths is p and 

the total mincuts number is c, we can express minpaths as P(1),P(2),…,P(p) and mincuts 

as C(1), C(2),…,C(c). 
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Link α reliability can be defined as the expected value of some random binary state 

variable xα (as in equation 1). Furthermore, since the structure function αs for a specific 

path s corresponds to a series system it can be written as:  

𝑎𝑠(𝐱) = ∏ x𝑖
𝑖∈𝑃(𝑠)

 (9) 

where: x is a link state vector. In the example network if links 1, and 2 function and 3, 4, 

5 fail then the state vector will be: xT = [1 1 0 0 0].  

From the equivalent system (series in parallel) of parallel minpaths P(1),P(2),…,P(p), the 

system structure function can be estimated by the following equation: 

𝜑(𝐱) = 1 − ∏ (1 −  𝑎𝑠(𝐱)) = 
𝑠=1 𝑡𝑜 𝑝

1 − ∏ (1 −  ∏ x𝑖
𝑖∈𝑃(𝑠)

) 
𝑠=1 𝑡𝑜 𝑝

 (10) 

For the equivalent (series system in parallel) transformation in the example network the 

structure function of the initial system can be written as: 

𝜑(𝐱) = 1 − (1 − x1x2)(1 − x3x4)(1 − x1x5x4) 

In the same manner and while the structure function βs of a mincut C(s) corresponds to 

an equivalent parallel (sub) system, it can be written as: 

𝛽𝑠(𝐱) = 1 − ∏ (1 − x𝑖
𝑖∈𝐶(𝑠)

) (11) 

Similarly, while the system consists of a series of mincuts C(1), C(2),…,C(c), the structure 

function of the system can be written as: 

𝜑(𝐱) = ∏ 𝛽𝑠(𝐱) = 
𝑠=1 𝑡𝑜 𝑐

∏ (1 −  ∏ (1 − x𝑖
𝑖∈𝐶(𝑠)

)) 
𝑠=1 𝑡𝑜 𝑐

 (12) 

For the equivalent (parallel in series) transformation in the example network, the structure 

function of the initial system can be written as: 

𝜑(𝐱) = [1 − (1 − x1)(1 − x3)] × [1 − (1 − x2)(1 − x4)] × [1 − (1 − x1)(1 − x4)] × 

[1 − (1 − x2)(1 − x5)(1 − x3)] 

Both equations 10 and 12 will provide the same result for the structure function φ(x), i.e., 

zero or one. In a similar manner, system reliability R can be defined as the expected value 

of the system’s structure function φ(x) via equation 2. Thus, equations 2 and 10, can lead 

to a minpath based expression of system reliability for a pair of nodes as: 
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𝑅 = 𝐸{𝜑(𝐱)} = 𝐸 {1 − ∏ (1 − ∏ x𝑖
𝑖∈𝑃(𝑠)

) 
𝑠=1 𝑡𝑜 𝑝

} (13) 

and equations 2 and 12, to an equivalent mincut based reliability expression for a pair of 

nodes: 

𝑅 = 𝐸{𝜑(𝐱)} = 𝐸 {∏ (1 −  ∏ (1 − x𝑖
𝑖∈𝐶(𝑠)

)) 
𝑠=1 𝑡𝑜 𝑐

} (14) 

To transform the Boolean φ(x) expressions into probability expressions, one can use the 

Poincaré’s Theorem also known as inclusion–exclusion method. This method is 

presented next. 

Inclusion–Exclusion Method 
The inclusion–exclusion method is a fundamental tool for transforming Boolean into 

probabilistic expressions, when minimal paths or cut sets are known. It provides a path-

based approach for estimating network reliability (Bell, et al., 1997) (Lucet, et al., 1999). 

After enumeration (e.g., minpaths or mincuts enumeration) is applied, a Boolean 

expression φ(G) is obtained. The terms of φ are all the minimal paths (or mincuts) and 

each term is a product of Boolean variables (state variables) that are associated with each 

element of a specific path (as those of the example given in the path-and-cut method). 

This can be expressed mathematically as: 

𝜑(𝐺) = ∑ 𝑃𝑖

𝑖

 (15) 

where: Pi is the i-th minimal path’s Boolean expression such that: 

𝑃𝑖 =  ∏ x𝑖𝑘

𝑘

 (16) 

where: k is the number of elements (links) that constitute the minimal path i. 

The reliability is then given as: 

R(G)= E{φ(G)} (17) 

Poincaré’s (inclusion–exclusion) formula for s minpaths is: 

𝐸{𝜑(𝐺)} =  ∑ 𝐸{𝑃𝑖}

1≤𝑖≤𝑠

 − ∑ 𝐸{𝑃𝑖1
∙ 𝑃𝑖2

}

1≤𝑖1<𝑖2≤𝑠

+ ⋯ + (−1)𝑠+1 𝐸{𝑃1 ∙ 𝑃2 … 𝑃𝑠} (18) 

For example given a graph G that consists of two minimal paths P1 and P2 then: 



11 
 

φ(G) = P1 + P2 and E{φ(G)} = E{P1 + P2} = E{P1} + E{P2} – E{P1 ∙ P2} 

Note: In Boolean expressions (of φ(G), etc.) the operators "x"̅̅ ̅̅ , “+”, “∙”, stand for Boolean 

operations of “not”, “or” and “and”. 

An equivalent formulation of the inclusion-exclusion formula that might be more 

convenient for road network reliability evaluation is also provided (Bell and Iida, 1997). 

This formulation is presented right next. If Es is the event that all links in a path P(s) are 

functioning, then reliability can be represented by a probability of the union of such events 

Es that belong to the path P: 

R = Pr {⋃ 𝐸𝑠
𝑠=1 𝑡𝑜 𝑝

} (19) 

The inclusion–exclusion formula is:   

𝑅 = ∑ Pr{𝐸𝑠}

𝑠=1𝑡𝑜 𝑝

− ∑ ∑ Pr {𝐸𝑠 ⋂ 𝐸𝑡} + ∑ ∑ ∑ 𝐸𝑠 ⋂ 𝐸𝑡

𝑢≠𝑠,𝑡
𝑡≠𝑠

𝑠=1 𝑡𝑜 𝑝𝑎𝑙𝑙 𝑡≠𝑠𝑠=1 𝑡𝑜 𝑝

⋂ 𝐸𝑢

+ ⋯ +  (−1)𝑝−1 Pr { ⋂ 𝐸𝑠

𝑠=1−𝑝

} 

(20) 

The main drawback of the formula is that it contains many pairs of terms which cancel 

out. Readers interested in the topic may find algorithms that generate only the non-

cancelling terms in the literature (Sun, et al., 2012). 

Sum of Disjoint Products (Fratta–Montanari) Method 
The Fratta-Montanari method (Bell, et al., 1997) (Lucet, et al., 1999) (Fratta, et al., 1973) 

converts Boolean expressions φ into probabilistic expressions as well. It differs from the 

previous method in that the Boolean expression φ(G) is transformed so that one event 

will not include another event of the sum. i.e., all the product terms will be disjoint (Lucet, 

et al., 1999). This can be achieved with the following formula: 

𝜑(𝐺) =  ∑(𝑃𝑖)

𝑠

𝑖=1

= 𝑃1 +  ∑[𝑃𝑖  ∙  ∏ (𝑃�̅�)
𝑖−1

𝑗 = 1
]

𝑠

𝑖=2

 (21) 

where:  

𝑃𝑖 =  ∏ 𝑥𝑖𝑗
𝑝
𝑗=1   (22) 
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and  

𝑃�̅� =  𝑥𝑖1 +  ∑[ 𝑥𝑖𝑗̅̅ ̅̅  ∙  ∏ (𝑥𝑖𝑘̅̅ ̅̅ )
𝑗−1

𝑘 =1
]

𝑝

𝑗=2

 (23) 

Reliability can then be estimated as: 

𝑅 = 𝐸{𝜑(𝐺)} = 𝐸{𝑃1} +  ∑ 𝐸{[𝑃𝑖  ∙  ∏ (𝑃�̅�)
𝑖−1

𝑗 = 1
]}

𝑠

𝑖=2

 (24) 

Bell and Iida (1997), provide an equivalent formulation of equation 24, as well: 

𝑅 = 𝑃𝑟 { 𝐸1 + [𝑛𝑜𝑡 𝐸1 ⋂(𝐸2 ⋃ 𝐸3 ⋃ …)]} (25) 

The first and second terms of equation 25, become exclusive events to each other and 

this transformation is repeated until the second term becomes an empty event. Both 

Fratta-Montanari and inclusion-exclusion methods are applicable only in the case that all 

relevant paths and cut sets are known.  

There is a variety of methods to simplify the calculation of the sum of disjoint products 

with Abraham method being the most popular (Lucet, et al., 1999) (Rebaiaia, et al., 2013) 

(Abraham, 1973). 

2.1.3.2 Heuristic Approaches for Connectivity Reliability Estimation 
A variety of heuristic methods has been suggested in the literature to estimate 

connectivity reliability sufficient accuracy, and reduced computational time and capacity 

needs (Rebaiaia, et al., 2013) (Colbourn, et al., 1985).  These can be classified into two 

main categories: Bounding Methods and Monte Carlo Sampling Techniques (Rebaiaia, 

et al., 2013). In the following sections we introduce the most prevalent of these methods 

in more detail. 

Bounding Methods 

All Paths and Cuts Method 

The all-paths-and-cuts method uses the steps of the path-and-cut method (Bell, et al., 

1997). When all paths are known (p = p) we can obtain the exact value of the system 

reliability: 

𝑅′ = 1 − ∏ (1 −  ∏ x𝑖
i∈P(s)

)
𝑠=1 𝑡𝑜 𝒑

 (26) 

Similarly, when all cut sets are known (c = c), the exact value of reliability is: 
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𝑅′′ = ∏ (1 −  ∏ (1 − 𝑟𝑖
i∈C(s)

))
𝑠=1 𝑡𝑜 𝒄

 (27) 

If we substitute link state variable xi with link reliability ri, we will obtain following upper U 

and lower L bounds equations of the true system reliability: 

𝑈 = 1 − ∏ (1 −  ∏ 𝑟𝑖
i∈P(s)

)
𝑠=1 𝑡𝑜 𝒑

 (28) 

𝐿 = ∏ (1 −  ∏ (1 − 𝑟𝑖
i∈C(s)

))
𝑠=1 𝑡𝑜 𝒄

 (29) 

Equations 28 and 29 correspond to the U and L curves of Figure 3, for increasing values 

of p and c, respectively. Due to the omission of Boolean algebra, they cannot converge 

to a single (true) value of reliability R. Instead they provide an approximating interval in 

which R lies. Equations 28 and 29, for p = p and c = c, will lead to the same result 

(R’=R’’=R) of the true reliability value R. This can be verified from Figure 3, where curve 

R’ (equation 26) is monotonically increasing as p increases and curve R’’ (equation 27) 

is monotonically decreasing as c increases, while both curves converge to the point R, 

when p = p and c = c.  

 

Figure 3 Esary-Proschan Upper and Lower Bounds and Intersection Point 
Source: Bell and Iida (1997) 
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For p = p and c = c, equations 28 and 29 provide the bounds, within which R lies, also 

known as Esary-Proschan bounds of system reliability R (Bell, et al., 1997) (Rebaiaia, et 

al., 2013) (Esary, et al., 1963). The Esary-Proschan bounding method, when enumerating 

all paths or all cuts, is considered #P-complete, thus not efficient computationally. Other 

bounding methods have been proposed in the literature and we refer to the study of 

Brecht and Colbourn (Brecht, et al., 1988), where the authors present (and improve) the 

Kruskal-Katona and the edge-disjoint path bounding methods for 2-terminal network 

reliability, which according to them outperforms the Esary-Proschan bounding method. 

Not All Paths and Cuts Method 
The not-all-paths-and-cuts method (Bell, et al., 1997) (Wakabayashi, et al., 1992) also 

employs the same equations as the all-paths-and-cuts method and follows the same 

procedures as the previously described method, but in this case: 

𝑝 ≠ 𝒑 𝑎𝑛𝑑 𝑐 ≠ 𝒄  (30) 

The calculations are simplified, but lack precision. When Boolean algebra is not omitted, 

R’ and R’’ values obtained, may be inaccurate and dependable on the number of paths p 

or cut sets c, while when Boolean algebra is omitted (Bell, et al., 1997) the values U and 

L cannot guarantee bounding of the  real value of R. 

Intersection Method 
The intersection method (Bell, et al., 1997) approximates system reliability with the 

intersection point I, of curves U and L (as shown in Figure 3), which lies between the 

Esary-Proschan bounds. Assuming that the intersection point I, is a good approximation 

of the true value of system reliability R, the effort is then, to reduce the number of paths 

and cut sets (thus, the processing amount) required, in order to obtain this point. An 

efficient way to achieve that goal, in early stages, is to select the sequence of paths and 

cut sets “so that curves U and L are as steep as possible” (Bell, et al., 1997). Initially, the 

path that maximizes U (equation 28) is found, which is equivalent with finding the path s 

that maximizes the following function: 

∏ 𝑟𝑖𝑖∈𝑃(𝑠)   (31) 

Noting that, ln(∏ 𝑟𝑖𝑖∈𝑃(𝑠) ) = ∑ 𝑙𝑛 (𝑟𝑖)𝑖∈𝑃(𝑠)  and ln(ri)<0, (0 ≤ 𝑟𝑖 ≤ 1), finding path s that 

maximizes U reduces to the shortest path problem (Bell, et al., 1997) with –ln(ri) the length 

of link i. This also implies that maximizing the increase of curve U is equivalent with finding 

n shortest paths. 

To find the L-curve minimum, a dual graph is developed (Bell, et al., 1997) (Ray, 2013) 

based on the initial graph (Figure 4). To obtain the dual graph G’ from the initial graph G 

we have to draw a new node on each face/region of the initial graph. A face (or region) is 
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characterized by a set of links that form its boundary and there are internal regions, like 

those defined by the links (1,3,5) and (2,4,5) as well as external regions, like those that 

the external graph boundaries define, i.e., (Origin,1,2,Destination) and 

(Origin,3,4,Destination). The new dual nodes, are then positioned in each face and 

connected (only) with those of adjacent faces (Ray, 2013). Each dual link’s length is equal 

to the length of the (unique) initial link that it intersects (e.g., the length of dual link 1’ is 

equal to the length of link 1). It should be always verified (as in Figure 4) that each dual 

link intersects one (and only one) initial link. 

The cut sets of nodes i and j, in Figure 4, are equivalent to the paths of nodes i’ and j’ of 

the dual graph G’, and minimizing L-curve, is similar to finding the cut set s that 

maximizes: 

∏ (1 − 𝑟𝑖
𝑖∈𝐶(𝑠)

) (32) 

Thus, since ln(1–ri)<0 and if –ln(1–ri) is considered as the i-th link’s length (in the dual 

graph), then the procedure of estimating the path s that minimizes L, is equivalent to the 

estimation of the shortest path in the dual graph G’. Implicitly, maximizing the decrease 

of curve L, is equivalent with finding n shortest paths in the dual graph G’. We refer to Bell 

and Iida (Bell, et al., 1997), where an example with 16 links is presented and a very good 

approximation of reliability is reached, using the intersection method. 

It should be noted that: 

ln(∏ (𝑟𝑖)𝑖∈𝑃(𝐶) ) =  ∑ ln(𝑟𝑖)𝑖∈𝑃(𝐶) , 0 ≤ 𝑟𝑖 ≤ 1  

ln(∏ (1 − 𝑟𝑖)𝑖∈𝑃(𝐶) ) =  ∑ ln (1 − 𝑟𝑖)𝑖∈𝑃(𝐶) , 0 ≤ 1 − 𝑟𝑖 ≤ 1  

(33a) 

(33b) 

The intersection method has many advantages due to its efficiency to provide quickly a 

good network reliability approximation (Bell, et al., 1997). Furthermore, the paths or cut 

sets used correspond to realistic paths and cut sets from the transportation planning 

perspective (zigzag paths and distant detours are considered last). An alternative would 

be to use the inclusion-exclusion formula (as shown previously) and stop the procedure, 

when a convergence criterion is satisfied (before the method’s “natural” ending iteration). 
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Figure 4 Dual Graph of an Example Network 
Source: Bell and Iida (1997) 

Monte Carlo Sampling Techniques 
Monte Carlo techniques typically yield good network reliability estimations, but there is no 

guarantee of accuracy and/or convergence (Brecht, et al., 1988). The standard Monte 

Carlo technique could be briefly described as an algorithm that generates n independent 

copies/samples of the stochastic graph (i.e., with random link states), that produce 

equivalent system function values. The system reliability is then approximated as the 

average of those values: 

𝑅(𝐺) =
∑ 𝜑(𝐱(𝑗))𝑛

𝑗=1

𝑛
 (34) 

where: x
(j)

 is the j-th copy of the stochastic graph (or else a stochastic element state vector 

for all the graph elements).  

This reliability estimator is considered unbiased. The law of large numbers indicates that 

this approximation will almost definitely converge to R(G) as n→∞. A confidence interval 

(with confidence 1–α centered at the half-width equal to 𝑐𝑎 ∙ 𝜎/√𝑛  , where: cα is the (1–

α/2)-quantile of the standard normal distribution ( i.e., mean=0, var =1) and σ is the 

standard deviation of φ(x). The confidence interval (according to the Central Limit 

Theorem) is approximately valid when n∙R(G) is a large number (Asmussen, et al., 2007) 

(Cancela, et al., 2010). Thus, the relevance of estimation is related to the number of 

samples and if that number is low, then the approximation may be incorrect, while if high, 

the computational cost of simulation may approach (or even exceed) that of exact 

methods (Rebaiaia, et al., 2013). 
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The structure function  φ(x), as used in the standard Monte Carlo simulation, is a Bernouli 

random variable (i.e., following the Bernouli distribution which is a special case of the 

Binomial distribution for n=1), and can be shown (Cancela, et al., 2010) (Gertsbakh, et 

al., 2015) that the relative error produced is: 

r. e. {R(𝐺)} =
√(1 − R(𝐺))

√𝑛 ∙ R(𝐺)
  (35) 

Equation 35, results in two basic drawbacks: i) necessity for high n values to decrease 

the relative error, and ii) very high relative errors when R values are small (i.e., highly 

sensitive to rare events (Cancela, et al., 2010). Variance reduction techniques (e.g., 

common random numbers, antithetic variates, importance sampling and stratified 

sampling) have been proposed in the literature to address these drawbacks (Asmussen, 

et al., 2007) (Cancela, et al., 2010) (Kumamoto, et al., 1977) (Rubino, et al., 2009). 

2.1.4 Travel Time Reliability 
Travel-time reliability can be considered a generalization of connectivity reliability where 

the probability of travel time exceeding a threshold value (representing 

disconnectedness) is calculated. This definition provides a measure of travel time stability 

(Bell, et al., 1997). While connectivity reliability was developed to study severe events, 

travel-time reliability was developed to study more frequent disruptions by less severe 

(supply or demand) variations that may occur on a daily basis (Watling, 2008). 

If we consider a path s with a links and assume statistical independence of past link flow 

observations link travel time distribution (usually a normal) can be developed. The mean 

path travel time T (as the summation of normal distributions means) is normally distributed 

with a mean μα and a variance σα
2 shown in equation 36 (Bell, et al., 1997) (Iida, 1999): 

𝑇~𝑁 ( ∑ 𝜇𝛼

𝛼∈𝑃(𝑠)

, ∑ 𝜎𝛼
2

𝛼∈𝑃(𝑠)

) (36) 

By normalization we can define the probability that travel time along a path is less than 

some threshold value t (Iida, 1999): 

𝑃𝑟 {𝑇 ≤ 𝑡} = 𝛷 ((𝑡 − ∑ 𝜇𝛼

𝛼∈𝑃(𝑠)

) √ ∑ 𝜎𝛼
2

𝛼∈𝑃(𝑠)

⁄  ) (37) 

where: t is a threshold travel time value.  
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Travel time reliability can then be determined for individual paths and path-based 

performance measures can be developed. 

2.1.4.1 Travel Time Reliability Performance Measures 
Travel time reliability performance measures may be grouped into three broad categories 

(Lomax et al., 2003): i) statistical range, ii) buffer time, and iii) tardy trip indicators. 

Statistical range measures typically use standard deviation statistics to form 

representative estimates of traffic conditions (in terms of travel time). They are typically 

presented with an average value plus or minus a deviation value. Buffer time measures 

indicate the amount of additional time needed to allow on-time arrival at a destination for 

the majority of trips. These measures may represent average trip times or additional time 

to average trip times to select a departure time that ensures on-time arrival to a 

destination with a specific confidence level. Tardy trip indicators provide a measure of 

unaccepted lateness (i.e., frequency of late arrivals) where a threshold value is used to 

identify acceptable late arrivals. Numerous studies exist on travel-time reliability 

performance measures (Lomax, et al., 2003) (Rakha, et al., 2006) (Lyman, et al., 2008) 

(Pu, 2011). 

2.1.4.2 Path based Travel Time Reliability 
The uncertainties in transportation system such as congestion lead to freight operators 

facing uncertainties in goods delivery. Travel time reliability is becoming increasing critical 

to businesses, especially the manufacturing sector as many manufacturers are 

positioning to adopt “just-in-time” manufacturing processes and other schedule 

dependent inventory, assembly and distribution logistics (Cambridge Systematics, 2012). 

Once segment roadway travel times have been estimated, the next step is to estimate 

path or trip travel times. Path travel-time reliability is estimated as the probability that the 

travel time between an origin-destination pair is within a specified range. The key 

parameters in estimating path travel-time reliability include estimating the path mean 

travel time and path travel-time variance. 

Two approaches have been used in past studies to define reliability for valuation studies: 

Mean-variance and Schedule Delay. The former approach uses statistical measures to 

separate out the value of typical/usual travel time (mean or a measure of central 

tendency) and measures for the dispersion of the travel time distribution, such as the 

standard deviation whereas the latter approach focuses on the magnitude of the time 

during early and late arrivals in relation to a pre-determined schedule.  

Mean-variance approach is easy to implement in existing analysis frameworks. However, 

there is concern that the mean value may include a portion of the reliability component, 

leading to double counting of benefits when analyzing an improvement. Several 
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researchers have indicated their preference for the schedule delay approach on 

conceptual grounds, but it is difficult to implement for the highway mode where travelers 

schedules are not known and would vary widely if they were. 

In schedule delay approach travelers define their own schedule and adjust their departure 

times, routes, and modes accordingly. In the scheduling delay approach, early arrivals 

can be valued differently than late arrivals. Reliability and scheduling are related 

concepts. The former refers to the disutility of the inconvenience and possible penalties 

attributed to the unreliability of travel times. The latter refers to the disutility of arriving 

either too early or too late, when the traveler has time restrictions in terms of flexibility of 

schedules. 

One of the initial studies (Small, 1982) established that scheduling costs play a major role 

in choice of departure times by defining a variable to measure how early or late the 

commuter is with respect to the official work start time. Let tw be the official work start 

time. If a commuter leaves home at time th and the travel time is T, then commuter arrives 

early if th + T < tw. Two components of Schedule delay concept are Schedule Delay Early 

(SDE), defined as tw - (th + T) and Schedule delay late (SDL) is (th + T) - tw. The scheduling 

cost function is as follows: 

𝐶𝑠 =  𝛼𝑇 +  𝛽(𝑆𝐷𝐸) +  𝛾(𝑆𝐷𝐿) +  𝜃𝐷𝐿 (38) 

where, 𝛼 is the cost of travel time  𝛽  and  𝛾 are the costs/min of arriving early and late 

respectively and  𝜃 is an additional discrete lateness penalty. DL is 1 when SDL>0 and 0 

otherwise.  

The scheduling cost function (Noland, et al., 1995) to allow for decomposition of morning 

commute which are the expected cost of schedule delay, lateness and travel time. The 

modified model is:  

𝐸𝐶𝑠 =  𝛼𝐸(𝑇) +  𝛽𝐸(𝑆𝐷𝐸) +  𝛾𝐸(𝑆𝐷𝐿) +  𝜃𝑃𝐿 (39) 

where, PL = E(DL) is the lateness probability.  

A recent study (Lyman, et al., 2008) used the standard travel time reliability measures for 

corridor analysis: 95th percentile TT, Travel Time Index, Buffer Index, Planning time index 

(PTI), congestion frequency.  The study corridor was I-5N, 23.5 miles in length, a freeway 

in Portland, Oregon. The analysis was carried out using PORTAL’s monthly report system 

which is a collection of all measured corridor travel times, extracted at 5 minute intervals 

for all of 2005.  

The procedure for estimating path travel-time reliability assumes that travel times follow 

a normal distribution and requires a measure of trip travel-time variance. Past study by 
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(Rakha, et al., 2006), shows that the assumption of normality is, from a theoretical 

standpoint, inconsistent with field travel-time observations and that a lognormal 

distribution is more representative of roadway travel times through goodness-of-fit tests 

that. However, visual inspection of the data demonstrates that the normality assumption 

may be sufficient from a practical standpoint due to its computational simplicity. This study 

also proposes five methods for the estimation of path travel-time variance from its 

component link travel-time variances as shown in Table 1.  

Table 1 Path Travel Time Variability 

 

Source: Rakha et al. (2006) 

The mean-variance approach allows the estimation of two widely used reliability metrics: 

value of travel time reliability (VTTR) and Reliability Ratio (RR). VTTR represents the 

user’s monetary weight for improving reliability and RR is defined as ratio of VTTR to 

VOT.  An established RR along with knowledge of the VOT simplifies the task of VTTR 

estimation. In recent studies (Asensio, et al., 2008) (Brownstone, et al., 2005) (Tilahun, 

et al., 2010) VTTR and RR are determined to capture the travel time reliability.  

A method for synthesizing a distribution of consistent path-dependent O-D travel times 

from the known distribution of link counts is suggested in the SHRP 2 C04 report (Vovsha, 

et al., 2013). This method generates of origin– destination (O-D) travel time distribution 

for the base year, which is needed for calculating travel time reliability measures. These 

reliability measures are used in travel demand models to explain travel choices along with 

the average travel time and cost. The method is designed to produce a distribution of 

travel times for a full regional O-D matrix for a certain time of day, period or hour.  
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SHRP L35B report (Sadabadi, et al., 2014) uses an instantaneous travel time aggregation 

method to estimate path travel times based on link travel times. Travel time data used as 

input in this study are provided by INRIX. In this study, data archived during calendar year 

2011 are used at 1-minute resolution on all segments considered.  The study shows that 

as trip length becomes longer, the risk impact of any newly added segment, while still 

positive, becomes marginal compared with the rest of the path. This phenomenon is 

reflected by the concavity of reliability ratio (RR) curves.  Other elaborate path travel time 

estimation methods (e.g., trajectory construction based models), will result in more 

accurate travel time estimates for long distance trips.  

SHRP 2 L35B study uses “Real Options Theory” which was first used by the SHRP 2 L11 

project (2013)  for determining the value Background of travel time reliability by using 

speed and volume data as input (Sadabadi, et al., 2014). The options-theoretic approach 

introduced by the SHRP 2 L11 uses an analogy where premiums are set for an insurance 

policy on guaranteed speed levels. Specifically, the method calculates the dollar value of 

reliability by multiplying the certainty-equivalent penalty (measured in minutes/mile and 

obtained by applying the closed form Black-Scholes equation) by the value of time, thus 

it requires an estimation or adoption of VOTT as input. The SHRP 2 L11 study takes into 

account heterogeneity of the road users and different trip purposes by applying a separate 

value of time that corresponds to each user group. 

Freight travel time reliability 
Past studies on the valuation of freight travel time reliability are limited compared to 

passenger travel. Most of the studies (Bergkvist, et al., 2001) (Bolis, et al., 1999) (Danielis, 

et al., 2005) (Wigan, et al., 2000) indicate that the freight value of reliability varies by 

commodity, with bulk commodities having the lowest value. However, there is little 

consensus on what the values of VORs or Reliability Ratios should be. If the Reliability 

Ratios for freight are equivalent to passenger travel, i.e., around 1.0, then VOR for freight 

will be higher (Cambridge Systematics, 2012). 

Path based dynamic travel time  
In most of the past studies, it is generally assumed that path travel time is the aggregation 

of the travel times on its consisting links. However, for a probe-based data collection 

system in which the number of reports is rather limited, this link-based 

estimation/prediction might not be reliable. (Chen, et al., 2001), evaluate the performance 

of dynamic travel time prediction models with real-time data (travel time) collected by 

probe vehicles on path and its consisting link. In this study “Kalman filtering method” is 

chosen because it enables the prediction of the state variable (travel time) to be 

continually updated as new observation becomes available. This approach has been 

used in the forecasting of traffic volume and real-time demand diversion as well as the 

estimation of trip-distribution and traffic density. In this study, this technique is used to 
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perform travel time prediction based on real-time information provided by probe vehicles. 

Specifically, the average travel time of probe vehicles at each time period is used as the 

real-time observation to predict the travel time in the next (or future) time period.  

Preliminary Methodology (Chen, et al., 2001) 
Step 1: Collect Link Travel time data at discretized time step (We have that for each 

 link) 

Step 2: Define regional O-D 

Step 3: Create/build k-shortest paths (with predefined impedance function) 

Step 4: Obtain path travel time by aggregating the TT of the links 

Step 5: Obtain path travel time reliability measures 

Table 2 Path Based Reliability Summarized Literature Review 

Literature Reliability Measure Notes 

Bergkvist and 

Westin (1996)* 
VTTR 

Data was collected through computer 

based SP survey. 

Bolis and 

Maggi * 

VTTR (dependent on type 

of operation such as Just In 

Time production) 

Based on the Leeds Adaptive SP 

(LASP) survey which provides choice 

of alternative ways for the freight 

operators. 

Danielis R. et 

al. * 
VTTR Also determined VOT. 

Wigan et al. * 
VTTR (dependent on 

segment type) 

Data was collected on three market 

segments: Inter-capital FTL, 

Metropolitan FTL and metropolitan 

multidrop. 

Brownstone 

and Small 

(2003) 

90th -50th percentile and 

Reliability Ratio= 

VTTR/VOT 

 

Asensio and 

Matas (2008) 

Standard deviation using 

Scheduling approach and 

Reliability Ratio 

 

Tilahun and 

Levinson 

(2007) 

Difference between actual 

late arrival and usual travel 

time and Reliability Ratio 
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SHRP S2-C04-

RW-1 

Standard Deviation per unit 

distance 

Used a distribution of path dependent 

Origin– Destination travel times 

SHRP S2-

L35B-RW-1 

95% TT, TTI, PTI, BI, 

VTTR, RR 

Uses Real Options Theory to improve 

travel time reliability 

 

Lyman and 

Bertini (2008) 
95% TT, TTI, PTI, BI, 

Also provides segment, corridor and 

network analysis 

Rakha et al. 

(2006) 
Path Travel time variability  

* For Freight 

2.1.5 Capacity Reliability 
Capacity reliability captures user behavior, is a generalization of connectivity reliability, 

and conceptually, lies between travel-time and behavioral reliability (Watling, 2008). 

Assuming a link is reliable when it provides a smooth flow, connectivity reliability can be 

defined as: “the probability that at least one path without congestion exists” (Iida, 1999). 

Connectivity methods as described herein can be used to estimate reliability under 

capacity degradation (ranging from disasters to less severe events like traffic incidents) 

but fail to capture user behavior. A number of studies have been conducted to approach 

reliability, incorporating both capacity changes and user route choices impacts. Next, a 

brief introduction of such approaches is presented.  

2.1.5.1 Degradable Transportation Systems (DTS) 
DTS can be defined as road networks where link capacities, hence system state and 

system performance, can be degraded (various capacity degradation levels) by a variety 

of events. Transportation degradation was introduced by (Asakura, 1997), who further 

extended travel time reliability concept for road networks, to consider capacity 

degradation as a consequence of road network deterioration. Nicholson and Du 

(Nicholson, et al., 1997) proposed a design and analysis framework for DTS. They 

developed an integrated steady-state equilibrium model for predicting macroscopic traffic 

behavior. The model assumed that network users choose paths that minimize their 

generalized travel cost and that the traffic levels between each O-D pair are directly 

related to demand and supply interactions (elastic traffic demand). They use system 

surplus as a measure to assess the socio-economic impacts of system degradation. The 

probability, that the flow reduction, due to capacity degradation, is less than a specified 

threshold value, constitutes the system reliability. They also propose an exact solution 

algorithm assuming that the state vector space X is discrete. Then the reliability of the k-

th O-D sub system can be estimated as: 
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R𝑘(𝜃𝑘) = ∑ 𝑝𝑠𝑧𝑘(

𝑤

𝑠=0

𝜃𝑘 , 𝐱𝑠), 𝑘 ∈ 𝑲 (40) 

where: z(θ,x) is a structure function and θ is the maximum acceptable flow decrement 

rate for the k-th O-D sub-system (0 < θ < l), while x is a component state vector, 

comprising the arc capacities, which belongs to a (discrete) component state vector space 

X and ps is the (known) probability of the s-th component capacity degradation and W is 

the number of component state vectors, such that: 

 𝑧𝑘 (𝜃𝑘 , 𝐱𝐬)  =  {
1 𝑖𝑓 𝑦𝑘(𝐱) ≤ 𝜃𝑘

0 𝑖𝑓 𝑦𝑘(𝐱) > 𝜃𝑘
   𝑘 ∈ 𝑲 (41) 

where: yk is the decrement rate (0≤ yk ≤1) of traffic flow f : 

 𝑦𝑘 (𝐱)  =  
 𝑓𝑘  (𝐱𝟎) −   𝑓𝑘  (𝐱))

 𝑓𝑘 (𝐱𝟎)
  𝑘 ∈ 𝑲 (42) 

where: x0 is the non-degraded component state vector. 

The system total traffic flow F is: 

F(𝐱) =  ∑  𝑓𝑘 (𝐱)

𝑘∈𝑲

 (43) 

and the system decrement rate is: 

𝑦 (𝐱)  =  
F (𝐱𝟎) −  F (𝐱))

F (𝐱𝟎)
  𝑘 ∈ 𝑲 (44) 

Similarly the system structure function will be: 

𝑧 (𝜃, 𝐱)  =  {
1 𝑖𝑓 𝑦(𝐱) ≤ 𝜃
0 𝑖𝑓 𝑦(𝐱) > 𝜃

   𝑘 ∈ 𝑲 (45) 

where: 

𝜃 =  ∑ 𝑣𝑘(𝐱𝟎)𝜃𝑘

𝑘∈𝑲

   and 𝑣𝑘(𝐱𝟎) =
𝑓𝑘(𝐱𝟎)

F(𝐱𝟎)
  , 𝑘 ∈ 𝑲 (46) 

and the system reliability will be: 
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R(𝛩) = ∑ 𝑝𝑠𝑧(

𝑤

𝑠=0

𝜃, 𝐱𝒔),   (47) 

To estimate these reliabilities (k-th and system) all possible component state vectors xs 

and probabilities ps must be enumerated. Then traffic flows fk(xs) and F(xs) must be 

estimated by solving an integrated equilibrium model for each xs, and then the decrement 

rates and structure 

2.1.5.2 Network Reserve Capacity Approach 
According to (Chen, et al., 1999), the method proposed by (Nicholson, et al., 1997), is not 

suitable to assess the capacity reliability of the network. In their study they introduce the 

concept of network reserve capacity μ for the estimation of a maximum flow capacity that 

is consistent with users’ route choice behavior as defined by Wardrop. Link reliability is 

defined as a random variable that can take continuous or discrete values between zero 

and one, which allows modeling for modest events without restricting to severe events 

that disconnect segments of the network. A side product of this capacity-based reliability 

is the estimation of travel time reliability when solving the user equilibrium problem in 

order to obtain the maximum network reserve capacity. The authors modeled this 

reliability problem as a bi-level problem with maximum capacity problem as the upper 

level (equations 48, 49) and the User Equilibrium (UE) on the lower (equations 50-53).  

max 𝜇 = g(𝑐1, 𝑐2, … 𝑐𝛼) 

𝑠. 𝑡.  

𝜐𝛼(𝜇𝒒) ≤ 𝑐𝛼, ∀𝑎 ∈ 𝐴 

(48) 

 

(49) 

where: μ (reserve capacity) is an output parameter which can be calculated by the 

capacities cα of the links and serves as a maximum O-D matrix multiplier, υα(μq) is the 

equilibrium flow on link α, with demands of all O-D pairs being uniformly scaled by μ times 

the base O-D demands q, (q is the existing O-D demand matrix in vector form). The matrix 

multiplier μ is obtained by finding the equilibrium flow υα(μq), by solving the following UE 

problem: 

min  𝑍 =  ∑ ∫ 𝑡𝛼

𝜐𝛼

0𝛼∈𝛢

(𝑥)𝑑𝑥  

𝑠. 𝑡. 

(50) 
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∑ 𝑓𝑝

𝛼∈𝛢

= 𝜇𝑞𝑤 ∀ 𝑤 ∈ 𝑊, (51) 

𝜐𝛼 =  ∑ 𝑓𝑝

𝛼∈𝛢

𝛿𝛼𝑝, ∀ 𝑎 ∈ 𝐴, (52) 

𝑓𝑝 ≥ 0, ∀ 𝑝 ∈ 𝑃 (53) 

where: 

P: set of routes in the network 

Pw: set of routes between O-D pair w∈W 

μ: O-D matrix multiplier for the whole network (upper level decision 

variable) 

Z: user-equilibrium objective function 

υα: flow on arc α∈Α 

tα(υα): travel time on arc α∈Α 

qw: existing demand between O-D pair w∈W 

q: existing O-D demand matrix in vector form 

fp: flow on route p∈P 

δαp: 1 if route p uses arc α, 0 otherwise 

The lower level takes into account route choice behaviors and congestion impacts, while 

the upper level determines the maximum O-D matrix multiplier μ, subject to the capacity 

constraints. As the scaled demand approaches the network capacity, the equilibrium 

constraints will have a substantial effect on the distribution of flow as well as on the 

network reserve capacity. 

Reliability for this formulation can be defined as: “The probability that the network reserve 

capacity is greater than or equal to the required demand for different levels of capacity 

degradation” or R(μp) = Pr(μ ≥ μp), where: μp is a required demand level. When link 

capacity takes only binary values of zero or one, it reduces to the connectivity reliability 

measure (as a special case of capacity reliability).  
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2.1.5.3 Network Robustness Index (NRI) 
NRI is a link-based capacity disruption approach (Scott, et al., 2006) (Sullivan, et al., 

2010) to quantify how individual links affect the total network travel time and the network 

robustness, when they are isolated or degraded (at various capacity-disruption levels). If 

a link’s degradation results in a significant increase in the total network travel time (when 

compared to the removal of other links), then this link is considered critical. In this way, 

one can rank all the links of a network. Furthermore, with the estimation of the network 

robustness index (estimated in the second step of the process) the network’s reliability 

over link disruptions can be evaluated.  A single link’s NRIα is the total travel-time change 

over a given time interval as a consequence of traffic being re-routed through other links 

when a specific link is removed. 

A base case network, at equilibrium, is used as a measure of comparison and total travel-

time cost TC is calculated as the sum of the products of link travel times ti (in min/trip) 

multiplied by the respective link flows vi (all links are fully functional and at user 

equilibrium):  

𝑇𝐶 = ∑ 𝑡𝑖 𝑣𝑖

𝑖∈𝐼

 (54) 

where: The travel-time factor, tivi, is the total minutes of travel per time interval on link i 

that belongs to a set of network links I. 

The system-wide travel-time cost TCa is then estimated for the case when an individual 

link a, is removed or degraded and all traffic on the network is re-assigned. 

𝑇𝐶𝛼 = ∑ 𝑡𝑖
(𝛼)

 𝑣𝑖
(𝛼)

𝑖∈𝐼/𝑎

 (55) 

The NRI of link α can be calculated as the difference between TCα and TC. 

NRIa = TCa – TC (56) 

2.1.6 Behavioral Reliability 
Connectivity and travel time reliability adopt a system operator perspective (Watling, 

2008) where user satisfaction is implicitly measured by the system performance. 

Behavioral reliability methods try to incorporate a user perspective. The inclusion of user 

perception produces a measure of how (un)reliability primarily affects the average user 

behavior rather than a measure of the system reliability performance. Thus, behavioral 

reliability could only be a complementary approach to travel time reliability. The reader 

may refer to a wide range of sources on behavioral reliability methods, like those that use: 
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i) fuzzy logic to capture uncertainty in the travelers perception of reliability of given paths 

(Chen, et al., 2001), and ii) minimal modifications of conventional methods to incorporate 

user behavior with a utility that is a linear combination of travel time mean and variance 

(Van Berkum, et al., 1999) or of mean and standard deviation (Lo, et al., 2006). 

2.1.7 Other Reliability Approaches 
In this section we briefly describe approaches that cannot be grouped under any of the 

previous categories or present some interesting/unique modeling attributes that allows 

separate classification and description. These are the Game Theoretical, Absorbing 

Markov Chains and Microsimulation approaches, briefly presented next. 

2.1.7.1 Game theoretical Approaches 
In a 2000, Bell (Bell, 2000), introduced a game theoretical approach for measuring a 

transport network’s reliability performance. He defined a network as reliable ‘if the 

expected trip costs are acceptable even when users are extremely pessimistic about the 

state of the network’. At that time all methods proposed assumed knowledge of link 

performance frequency distributions (usually delay, travel time or capacity distributions), 

an information that in most cases is unavailable. Bell, adopted a two-player, non-

cooperative, zero-sum game between the network user (aiming to find a path with 

minimum expected trip cost) and an “evil entity” or network “spoiler” that can impose link 

costs to the user aiming to maximize the expected trip cost. The author claimed that “the 

mixed strategy Nash equilibrium for this game offers a useful measure of network 

reliability, since it yields the expected trip cost when the user is extremely pessimistic 

about the state of the network”. The game was reformulated into two equivalent linear 

programs, dual to each other, using the maximin approach, with path choice probabilities 

as the primal and link-based scenario probabilities as the dual variables. To avoid path 

enumeration the author suggested substituting link choice probabilities for path choice 

probabilities as the primal variables, and imposing node probability conservation 

constraints on the primal variables. A simple iterative solution scheme based on the 

simple Method of Successive Averages (MSA) was proposed.  

2.1.7.2 Absorbing Markov Chains Approach 
A Markov chain is characterized by a transition matrix with elements tij that define the 

probability of an entity moving from state i to state j. In the context of reliability for road 

networks, states represent links/vertices of a network graph and entities represent 

travelers. In the study of Bell and Schmöcker (Bell, et al., 2002), the states represent the 

intermediate links of a graph, the origins (that can be multiple), one destination and one 

bin where trips that encounter link degradation are collected. Estimation of such a 

transition matrix can be done with All-or-Nothing (AON), Stochastic User Equilibrium 

(SUE) as well as UE assignment and the rows of the matrix must sum up to unity (for 
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conservation reasons). The assignment selection (AON, SUE or UE) also defines the type 

of the transition probability which can be binary (0-1) for AON or real (between zero and 

one) for SUE or UE. It should be noted that transition probabilities are destination-specific, 

thus if multiple destinations, have to be considered, they should be encountered one per 

time. The destination and bin elements are called absorbing i.e., the traveler cannot leave 

them, once entered. Vertex failure probabilities can be used to determine the trip failure 

probabilities (Bell, et al., 2002). The transition probabilities were calculated according to 

the least cost paths. The link cost was calculated by the following formula: 

𝑐𝑖𝑗 =  𝑑𝑖𝑗 − 𝛽ln (𝑟𝑖) (57) 

where: dij is the cost for ignoring unreliability, β is the risk averseness factor and ri is the 

reliability of node i. If β=0, the link reliability is not considered and if β is large and the user 

can have information on the reliability ri, then the reliability is a significant factor in user’s 

cost estimation. The study has shown that the encountered reliability increases as β 

increases.  

2.1.7.3 Microsimulation Approach 
The majority of models described previously require large computing capacity and time. 

Equilibrium based models may be appropriate when assessing the effect of long term 

degradations (natural disasters), but most degradations are short-term and it is unlikely 

that an equilibrium will be achieved in such cases. For both short term degradations and 

rapid demand increases, equilibrium based models will most probably lead to erroneous 

assumptions (Nicholson, 2003). For such events studies have shown (Berdica, et al., 

2003) that microsimulation models are more sensitive. 

2.2 Truck Parking Demand Analysis using GPS Data 
The freight transportation system in USA makes one of the most valuable contributions 

to the nation’s economy and progress. In this system, truck traffic mode makes most 

contributions and it is expected to increase by 45% by 2040 (FHWA, Freight Facts and 

Figures 2013). Long term economic growth shall result in even greater demand for truck 

traffic transportation mode. Even after such great demand, there is a huge lack of truck 

parking in many states (Dowling et al., 2014). Also, truck traffic does not get access to all 

roadways and cities and counties regulate truck traffic by restricting parking, prohibit from 

certain roads and designate specific routes which leads the truck drivers to search for 

parking areas for rest and if not available, they tend to park in areas not designated for 

parking such as ramps and spillover parking which signifies a safety concern for the other 

forms of traffic. Moreover, truck parking has been indicated as the most influential factor 

for route selection decisions (Dowling et al., 2014). Lack of truck parking is also indicated 

as a characteristic of an unreliable route as the truck drivers do not get the required 
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amount of rest or sleep and this may lead to safety concerns during travel for the truck 

driver as well as other modes. 

The review is first categorized by the different states which has concerns regarding truck 

parking and then on other studies. From the following review, it can be understood that 

roughly 42% of the literature mentioned about using truck GPS data for evaluating parking 

demand, about 33% mentioned different methodologies like surveys, to collect truck data 

and additional data and about more or less 20% mentioned about technological usage of 

implementing safe and easier truck parking. 

2.2.1 Truck Parking in Wisconsin 
A study of truck parking issues was conducted along the major state highways in 

Wisconsin (Adams, et al., 2009). This study determined specific locations in Wisconsin 

with parking issues and prioritized them based on specific criteria. The methodology that 

was used included development of a GIS-supported online survey tool to collect 

information on truck parking issues. Data was collected from 3 groups of participants: 

truckers/carriers, highway patrol officers and public freight planners. The data collected 

through the survey was exported to ArcGIS for spatial analysis. Other data that were used 

include shape files of Interstate and state highways networks and related attribute 

information, taken from the National Transportation Atlas Database (NTAD) 2006 and the 

Freight Analysis Framework (FAF). One of the outputs from these analyses was 

determination of priority of interstate and state corridors and cities in the region suffering 

from truck parking issues. Figure 5 shows that facilities with different priority levels 

suffering from capacity issues. The locations of parking facilities were clustered using the 

Nearest Neighbor Hierarchical (NNH) clustering algorithm in the software tool CrimeStat 

3.1. 
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Figure 5 Priority Facilities with Capacity Issues 
Source: Adams et al. (2009) 

This study found many truck parking problems and the most common parking problem 

found is related to capacity and ramp parking. There are not enough parking spaces to 

meet the peak demand during popular hours of use and the overflow trucks park at the 

ramps. Moreover, parking capacity shortages occur in the early evening or late at night. 
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2.2.2 Truck Parking in Washington 
Washington State Department of Transportation (WSDOT) performed a study to 

determine if there is shortage of truck parking at public rest areas (PRAs) and commercial 

truck stops (CTSs) and identify strategies to increase the amount of truck parking in future 

(Parametrix, 2005). The study area was I-5, I-90 and I-82. It was found that PRAs are 

over capacity by 8% and CTSs are underutilized by 13%. Truck parking data was 

collected by telephone survey for the PRAs and CTSs at the corridor, segment and facility 

levels. Truck parking data were also collected at other locations along the study corridors, 

such as weigh stations, on- and off-ramps, shoulders, and chain-up areas and these were 

collectively referred to as illegal truck parking in this study. Interestingly, in this study, the 

highest truck parking demand for both CTSs and PRAs occurred between 6 PM and 6 

AM and this was defined as the peak period. Existing truck parking demand was 

calculated by recording the number of trucks parked at these locations in terms of volume 

and location. Future truck parking demand was estimated for 2030 by multiplying the 

existing demand by a growth factor that was developed for the study corridors. The growth 

factors were estimated based on: 

Washington State annual truck growth rates observed in WSDOT historical traffic volume 
data 

The Strategic Freight Transportation Analysis (2003) and Eastern Washington Intermodal 
Transportation Study (1993) truck volume databases. 

WSDOT’s Weigh-In-Motion recorders for truck traffic volumes. 

Freight forecast estimates for the Port of Seattle and Port of Tacoma. 

The Federal Highway Administration (FHWA) Study of Adequacy of Commercial Truck 
Parking Facilities (FHWA June 2002). 

The draft Freight Report for the 2005 Washington Transportation Plan Update (WSDOT 
2005) 

The study recommended several improvement strategies and options to increase the 

truck parking capacity at PRAs and CTSs. 

2.2.3  Truck Parking in Virginia 
(Garber, et al., 2002) developed a methodology to determine the supply and demand for 

heavy truck parking. I-81 was used as the study area. Supply was defined as the number 

of parking spaces available for large truck parking and demand was defined as the sum 

of the parking accumulation and illegal parking at a given time. Parking duration and 

accumulation data was obtained for different times along with location, number and types 

of parking spaces, and availability of other facilities of each truck stop and rest area. 

Figure 6 and 7 show the accumulation and duration of trucks at different time of day.  
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Figure 6 Accumulation vs Time of Day 
Source: Garber et al. (2002) 

 

Figure 7 Average Duration vs Time of Day 
Source: Garber et al. (2002) 

Survey data was also collected from the truck drivers. Using the dataset, stepwise 

regression analysis was used to develop demand models. The variables used for the 

model were: 

TotalTruck: Total numbers of trucks on I-81 near a truck stop in half hour intervals. 

PercentTruck: Percentage of trucks in the traffic stream in half-hour intervals. 
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Duration: Duration at a truck stop in half-hour intervals. 

Dist_81: Distance from a truck stop to I-81. 

Dist_TS: Distance from a truck stop to the nearest other truck stop. 

Dist_RA: Distance from a truck stop to nearest rest area. 

SERVICE: Dummy variable for measuring the difference of services between large and 
small truck stops. (Number of spaces > 60, SERVICE = 1.)  

The estimated coefficients for the truck parking model are given in Table 3 as follows: 

Table 3 Estimated Coefficients for Truck Parking Model 

Independent 

Variable 
Model 1 Model 2 Sign 

Intercept -1586.89 -1475.79 - 

Percent of truck 1.41039 1.5478 + 

Parking Duration 0.15563 0.13912 + 

Total truck volume 0.06955 0.05898 + 

Distance to I-81 -123.293 -114.328 - 

Distance to Nearest 

Truck Stop 
111.9563 103.7537 + 

Distance to Nearest 

Rest Area 
14.22398 13.80663 + 

Service Provided 988.9973 919.6157 + 

Using the estimated model, demand was forecasted for 10 and 20 years. It was found 
that there is a deficiency of 309 spaces at present. 

2.2.4 Truck Parking in Florida 
(Bayraktar, et al., 2014) made an attempt to determine the supply and demand 

characteristics for commercial truck parking in Florida and explored technology that can 

be used to improve parking management in order to better utilize the truck parking spaces 

at public rest areas. This research was conducted in two phases. Phase one included 

collection of rest areas in Florida and observation of truck parking facilities and determine 

shortfalls in parking supply and determine illegal parking. Phase two consisted of 

implementation of a smart parking management system for trucks. The study area 

included all of the public rest areas along the I-10, I-75, and I-95 corridors. The data 

collected was the number of truck parking spaces at each location and total truck parking 

utilization. Total parking utilization is the percentage of trucks parked both legally in the 
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parking spaces and illegally elsewhere at the facility with respect to the available capacity. 

The data was analyzed and report was made on each rest area. A sample report is shown 

in figure 8. 

 

Figure 8 Truck Parking Problem Map for Florida 
Source: Bayraktar et al. (2014) 

2.2.5 Truck Parking in Tennessee 
(Chatterjee, et al., 2000) presented a survey based study of truck parking in public rest 

areas along Tennessee’s interstate highways. The study area included all public rest 

areas in Tennessee. The data was collected in survey form and these were the occupancy 

of each space from 10 PM to 6 AM along with some identifying information about the 

trucks, like company name, color, and the configuration of the truck / trailer. The data was 

analyzed and reported as shown in Figure 9. 
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Figure 9 Truck Parking Problem Map for Florida 
Source: Chatterjee and Wegmann (2000) 

Various findings were reported from the data statistics. It is mentioned that rest areas are 

more heavily used on Mondays through Thursdays with Monday and Tuesday being the 

busiest of days. Also, it is mentioned that among the trucks parked inside the rest area, 

nearly 75% occupy a space for more than 4 hours. 

2.2.6 Truck Parking in Minnesota 
Minnesota Interstate truck parking study was done for developing information for 

supporting future truck parking decisions (Maze, 2008). The study examined the supply 

and demand of public and private commercial vehicle parking. The study area was 

Minnesota’s three primary interstate corridors, I-90, I-35 and I-94. The study was 

conducted through 3 phases. Phase one consisted of collection of data regarding truck 

parking demand by time of day.  Aerial photographs, State DOT maps and google maps 

were used to obtain the parking supply information and site characteristics. Phase two 

consisted of truck parking demand analysis. The data collected in phase one were 

compiled and field records were supplemented with truck parking capacity usage 

database. This data was summarized and a measure was developed to identify over 

capacity facilities. Table 4 shows an example of capacity constraints on I-90. 
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Table 4 Capacity Constraint on I-90 

Interstate 90 Rest Areas 
Truck Parking Capacity Truck 

Stalls Adequate 15% 25% 50% 

Beaver Creek (E.B.) Exit 0 x       16 

Adrian (E.B.) Exit 25   x     6 

Adrian (W.B.) Exit 26     x   7 

Clear Lake (E.B.) Exit 69     x   10 

Des Moines River (W.B.) Exit 72 x       9 

Blue Earth (E.B.)  Exit 118   x     10 

Blue Earth (W.B.)  Exit 119 x       11 

Hayward (E.B.)  Exit 161   x     10 

Oakland Woods (W.B.) Exit 171     x   10 

Highforest (E.B.) Exit 202     x   6 

Marion (W.B.) Exit 220       x 20 

Enterprise (E.B.) Exit 244 x       11 

Dresbach TIC (W.B.)  Exit 275 x       5 

Source: Maze (2008) 

Phase three consisted of conducting survey on trucking companies within 48 hours of 

vehicle observation to find out information about the attitude and behavior of drivers. 433 

motor carriers were given 89 survey questions to which only 41% responded. All these 

information was processed and demand and supply maps for the state of Minnesota was 

created. Based on the demand and supply scenarios, it was found that five rest area 

facilities are at or over capacity 50% of the time. Several other rest areas are over capacity 

at least 25% of the time. The authors recommended immediate investment to these rest 

areas. 

2.2.7 Other Studies 
Many other studies have been conducted regarding truck parking. Moreover, several 

other studies have been conducted regarding truck GPS data and truck trips which are 

summarized in Table 5. (Davis , 1997) performed an empirical research at the state and 

national level to express the concern for additional truck parking space along U.S. 

interstate highways. Survey was done to measure truck parking supply and demand 

through peak-period (late night and early morning) at four public rest areas and three 

private truck stops along a 200 mile segment of I-81. Total number of available parking 

spaces were counted and legal and illegal space utilization was monitored on an hourly 

basis. Capacity and facility characteristics were also determined. It was found that large 

numbers of trucks were parked illegally on shoulders and ramps of rest areas, often 

before the corridor reached capacity and even when legal parking spaces were available 

at a rest area. 
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(Fleger, et al., 2002) investigated the adequacy of commercial truck parking facilities that 

serves the National Highway System (NHS). The study involved multiple tasks including 

national survey of truck drivers, develop an inventory of public and private rest areas and 

developing a truck parking demand model. Nationwide survey of parking spaces at PRAs 

was done to find the number and characteristics of Government owned spaces for trucks. 

Also, an inventory of CTSs was created and maintained by Interstate America. Using 

these data, truck parking demand model was estimated on a highway segment 

considering the daily truck volume across the segment and other parameters. The 

simplified demand model is described in the following: 

𝐷 = 𝑇𝐻𝑇 . 𝑃𝑎𝑣𝑔 (58) 

Where, D is the demand along a highway segment 

 THT is the total truck hours of travel per day 

 𝑃𝑎𝑣𝑔 is the average parking time per truck-hour of travel. 

THT is calculate by: 

𝑇𝐻𝑇 = 𝑃𝑡 . 𝐴𝐴𝐷𝑇.
𝐿

𝑆
 (59) 

Where 𝑃𝑡 is the percent of vehicles consisting of trucks 

 AADT is the average daily traffic 

 L is the length of segment 

 S is the speed limit or average truck speed 

Table 2 shows the model parameters were used to adjust the truck volume estimate in 

equation (59) and Pavg is equation (58). 

Table 5 Demand Model Parameters 

Parameter Description Value 

𝐹𝑠 Seasonal peaking factor 1.15 

𝑆𝐻/𝐿𝐻 Short-haul to long-haul ratio 
0.36/0.64, 

0.07/0.93 

𝐷𝑆𝑇 Short-term parking duration per hour traveled 5 min/h 

𝑇𝐷𝑅𝑉𝐼𝑁𝐺 Time driving for long-haul drivers 70 h/8 days 
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𝑇𝐻𝑂𝑀𝐸 Time at home for long-haul drivers 42 h/8 days 

𝑇𝐿𝑂𝐴𝐷/𝑈𝑁𝐿𝑂𝐴𝐷 Time loading and unloading for long-haul drivers 15 h/8 days 

𝑇𝑆𝐻𝐼𝑃𝑃𝐸𝑅/𝑅𝐸𝐶𝐸𝐼𝑉𝐸𝑅 Time at shipper/receiver for long-haul drivers 16 h/8 days 

𝑃𝑅𝐴, 𝑃𝑇𝑆 
Portion of demand for public rest 

areas/commercial truck stops 
0.23, 0.77 

𝑃𝑃𝐹𝑆𝐻 Peak-parking factor for short-haul trucks 0.02 

𝑃𝑃𝐹𝐿𝐻 Peak-parking factor for long-haul trucks 0.09 

𝑃𝑅𝐿𝐻 Long-haul parking ratio 0.7833 

Then the parking demand and supply of a highway segment was compared to find if there 

is a shortage or surplus. The two most important factors that contribute to the demand for 

truck parking are the need to comply with Federal Hours of Service (HOS) rules and the 

need for drivers to perform certain non-driving activities like eating, fueling. 

Table 6 Collected Studies Overview 

Serial 

No. 
Literature Objective 

Type of 

study 

Study 

Area 
Data Used 

Tools/Model

s developed 

1 
(Adams, et 

al., 2009) 

Truck 

parking 

issues 

Survey 

based 

Interstate 

43, U.S. 

Highways 

8, 10, 41, 

51, 53 

and 151, 

and State 

Trunk 

Highway 

29 

online and 

paper-based 

surveys, in-

person and 

telephone 

interviews 

GIS survey 

tool 

2 
(Bayraktar, 

et al., 2014) 

Truck 

parking 

supply 

trends 

Survey 

based 

public rest 

areas 

along the 

I-10, I-75, 

and I-95 

corridors 

Truck 

parking 

characteristic

s, shortfalls 

in the 

spaces, 

illegal 

parking 

Occupancy 

prediction 

model 
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3 
 (Chatterjee, 

et al., 2000) 

Parking 

occupancy 

characteristi

cs 

Survey 

based 

Rest 

areas in 

TN 

Survey data 

and truck 

characteristic

s 

N/A 

4 
(Davis , 

1997) 

Truck 

parking 

space 

shortfall 

Survey 

based 

4 public 

and 3 

private 

rest area 

along I-81 

corridor 

Truck 

parking 

space 

utilization on 

hourly basis 

N/A 

5 
(Garber, et 

al., 2002) 

Truck 

parking 

supply and 

demand 

estimation 

Inventory 

and survey 

based 

Rest 

areas and 

truck 

stops at I-

81 

Parking 

duration and 

accumulation 

data 

Stepwise 

regression 

model for 

demand 

6 
(Parametrix, 

2005) 

Find truck 

parking 

shortage 

Inventory 

and survey 

based 

I-5, I-82 

and I-90 

Parking 

demand data 

by recordings 

Growth 

factor for 

future 

demand 

forecasting 

7 
 (Fleger, et 

al., 2002) 

Investigate 

adequacy of 

truck parking 

facilities 

Inventory 

and survey 

based 

Truck 

parking 

facilities 

serving 

the 

National 

Highway 

System 

(NHS) 

Interstate 

America 

database of 

commercial 

truck stops 

Simplifies 

demand 

model 

 

8 
(Maze, 

2008) 

Examined 

truck parking 

supply and 

demand 

Inventory 

and survey 

based 

I-90, I-35, 

I-94 

Truck 

parking count 

data by time 

of day, site 

information 

N/A 

9 
(Fallon, et 

al., 2011) 

Determine 

truck parking 

availability 

Technology 

based 

Truck 

stop at 

US 1 and 

Truck counts Magnetomet

er device for 
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using 

magnetomet

er 

public rest 

stop on I-

95 

truck 

counting 

10 
(Fischer, et 

al., 2006) 

Develop 

performance 

measures to 

evaluate 

strategies for 

reducing 

truck trips 

Technology 

based 

Ports of 

Long 

Beach 

and Los 

Angeles 

Port and 

cargo 

characteristic

s 

QuickTrip 

truck trip 

generation 

model 

11 
(Gaber, et 

al., 2005) 

Review 

various 

literature and 

methodologi

es to assess 

truck parking 

availability 

Review 

and 

methodolo

gy based 

Nebraska 

Interstate 

corridors 

Survey data 

from 

stakeholder 

focus group 

N/A 

12 

(Garber, et 

al., 2004) 

 

Proposed 

methodology 

for improving 

truck parking 

information 

system 

Methodolo

gy and 

technology 

based 

I-81 

Truck driver 

survey, truck 

crash data, 

truck AADT, 

traffic 

facilities 

Prototype of 

truck parking 

information 

system 

13 
(Gentler, et 

al., 2011) 

Field 

operational 

test of 

parking 

monitoring 

Technology 

based 

Charlton 

Westboun

d Service 

Center on 

I-90 

N/A N/A 

14 
(Haghani, et 

al., 2013) 

Improve 

truck parking 

safety using 

technology 

Technology 

based 

Truck 

parking 

facility at 

I-95 

northboun

d prior to 

MD 32 

N/A 

automated 

real-time 

parking 

information 

system 
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15 
(Heinitz, et 

al., 2009) 

Proposed 

demand 

modeling 

approach for 

scarce truck 

parking 

facility 

Application 

based 
Germany 

HGV inflow 

or time-

variation 

curves of 

road freight 

transport 

demand 

Car park 

choice 

model 

16 
(Kawamura, 

et al., 2014) 

Identify 

factors for 

truck parking 

violation 

Inventory 

based 

Chicago 

urban 

area 

parking 

citations for 

12 month 

period 

Simple 

regression 

model 

17 

(Mbiydzeny

uy, et al., 

2012) 

Developing 

concept of 

intelligent 

truck parking 

Technology 

based 
Sweden 

Parking 

occupancy 

and vehicle 

location data 

N/A 

18 
(Pecheux, 

et al., 2002) 

Estimate the 

distribution 

of truck 

parking 

demand and 

supply along 

the NHS 

Application 

based 

29 

highways 

segments 

on I-81 

Truck AADT, 

% of trucks, 

length of 

segment, 

speed limit or 

average 

truck speed 

N/A 

19 
(Rodier, et 

al., 2007) 

Explore the 

truck parking 

problems 

and 

solutions 

Review 

and Survey 

based 

California 
Trucker 

survey data 
N/A 

2.2.8 Literature Gap 
A thorough literature review on truck parking has shown that the prediction of parking 

demand in the rest areas is dependent on several factors and many of them have not 

been addressed. Moreover, none of the research methodologies insisted on using truck 

GPS data for estimating demand and supply. Research to estimate the parking demand 

using truck GPS data should be taken into consideration, and identify factors affecting 

parking demand for design purposes and also identify locations which requires rest areas 

or truck parking so that the truck drivers get ample rest thus increasing safety and 

efficiency. 
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The state of Tennessee acquired few approaches to address the growing demand for 

truck parking subsequent to the 1996 Study. The University of Tennessee led nighttime 

observational studies at all public rest areas in Tennessee to learn about the parking 

space occupancy characteristics of trucks. They examined the availability of space in 

private truck stops near interchanges. Their results showed that the rest areas were 

swarming with trucks at night, since a lot of trucks were found parked along the shoulders 

of highway exit and entrance ramps, as well as on interchange ramps. On the other hand, 

around 30% of the private truck parking spaces remained vacant (Pecheux et al., 2002). 

Interview was also held to understand why some truck drivers parked along the highway 

when there were available private parking spaces. 

However, it was a preliminary study and does not explain the demand or shortage during 

the different time periods like peak and off peak period. Also, nothing in the literature was 

found regarding parking supply. In order to get an accurate estimation of the supply, a 

thorough analysis must be done to minimize the truck parking shortage. This involves 

analyzing various other factors that may affect the truck parking. 

2.3 Freight Performance Measures (FPMs) Using Truck GPS Data 
The evaluation of corridors’ performance is essential in identifying bottlenecks and 

determining network sections that need to be improved. Past practices include travel 

diaries and traffic counts but these practices tend to be time consuming and with low 

accuracy. Since every truck in the U.S. is equipped with a GPS device researchers have 

explored possibilities of using information from these devices not only to calculate FPMs 

but also to define travel patterns and make prediction models. The performance measure 

used mainly in studies is travel time (TT), hence this part of the literature review is 

classified in three categories based on how TT is computed: i) link TT (LTT), where travel 

time is computed for a link; ii) trip TT (TTT), where travel time is calculated for a trip or 

tour; iii) miscellaneous – different from i and ii. 

2.3.1 LTT Focus 
Quiroga & Bullock (Quiroga, et al., 1998) proposed a methodology to perform studies for 

estimating TT of roadway segments using GPS and Geographic Information System 

(GIS) technologies. GPS data were collected from three metropolitan areas in Louisiana, 

LA (i.e., Baton Rouge, Shreveport, and New Orleans). Average TT and travel speed (TS) 

values were computed for all highway segments. A length of segment comprised 0.2-0.5 

miles. GIS was utilized to process queries, produce reports and colored-theme maps, 

depicting TT by link. Results showed that shorter GPS sampling periods (1 to 2 seconds) 

decreased errors in TS estimation. The authors underlined that median speed was a more 

accurate measure of the central tendency than mean speed as the latter was affected by 

incidents occurred during peak hours. Quiroga (Quiroga , 2000) conducted a similar study 

for the LA transportation network (Baton Rouge). Highways were separated into 
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segments, and LTT was calculated for each segment. The author also provided a 

procedure for estimating several other performance measures (acceptable TT, segment 

TS, travel rate, delay, total delay, delay rate, and relative delay rate) that could be used 

for quantifying congestion.  

Storey & Holtom (Storey , et al., 2003) used GPS data to compute link TS (LTS) and LTT 

at West Midlands highways in the UK. The GPS device provided information every 60 

seconds, while a vehicle ignition was being on. Around 20% of the data were discarded, 

as they provided coordinates (latitude and longitude) that didn’t belong to the road 

network.  Links of the considered highways were separated into 50 m segments, and the 

average TS was calculated for each segment. It was assumed that segments between 

two GPS data points had the same average speeds. The journey times at the link level, 

estimated using GPS data, were calibrated, and results demonstrated an acceptable 

accuracy of the proposed approach. The analysis of journey speeds indicated the 

existence of congestion issues at major junctions of links, leading to the city center. 

Jones et al. (Jones, et al., 2005) presented a methodology that could be applied to 

measure performance of busy freight corridors. The procedure was separated in 4 steps: 

1) identification of freight corridors, 2) review of data collection technologies, 3) System 

Alpha Test, and 4) System Beta Test. Top ten US cities with the highest truck volumes 

were identified using American Transportation Research Institute (ATRI) satellite position 

reports. The busiest freight corridors were determined for each of those cities based on 

the data, provided by Cambridge Systematics. Different methods of data collection were 

described: satellite-based systems, terrestrial wireless systems, hybrid systems, on-

board systems, and fixed site systems. GPS was found to be efficient for the analysis. 

The Alpha Test was performed to associate a vehicle ID with a highway segment geo-

position, to calculate the average vehicle TS, and to remove outliers that could affect the 

accuracy of speed estimation. The main purpose of the Beta Test was to process TT and 

TS at each segment and to transfer the data to the visualization tool. As a result of the 

conducted study, the authors created a map, depicting the average TS at the busiest US 

corridors. 

Ando & Taniguchi (Ando, et al., 2006) developed a model for the vehicle routing problem 

with time windows (VRPTW), minimizing the total cost of LTT uncertainty and penalties 

due to early arrival/delayed arrival to customers, requesting a particular time window. The 

information on LTT was collected using sensors, radio beacons, and GPS devices. Truck 

arrival times were assumed to follow a normal distribution. Statistical TT distributions were 

obtained for each link and were approximated to triangular distributions. An additional 

linear regression analysis was performed to quantify relationship between LTT and link 

distance. The traffic flow simulation was used to estimate TT distribution for each route 

and determine the optimal visiting order of customers. Results indicated that the proposed 
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approach reduced the total cost by 4.1%, the total cost standard deviation by 75.1%, and 

mitigated environmental impacts, caused by trucks. 

Schofield & Harrison (Schofield, et al., 2007) underlined the importance of FPMs for the 

US Department of Transportation (DOT), State DOTs, and various transportation 

agencies. Practices for assessing performance of freight corridors, employed in different 

states, were described in the report. The study focused on developing appropriate FPMs 

in the Texas (TX) area. The busiest state highways were identified. GPS records were 

provided by ATRI for the entire year of 2005. The authors indicated that the location error 

for each observation could reach up to ¼ mile. The segment length comprised 50 miles. 

TT, TS, and TT index (TTI) were estimated for each segment. Changes in travel pattern 

were noticed when the Hurricane Rita notification was announced. The report provided 

distribution of hourly truck traffic. Future research directions included comparison of the 

actual speed with the free-flow speed for each segment, estimating FPMs for highway 

corridors in case of non-recurring congestion, calculating of truck wait time at boarders, 

consideration of other FPMs, etc. 

Liao (Liao, 2008) compared two ATRI FPM database systems: the GIS – based system 

and the Structured Query Language (SQL) – based system. The second system was able 

to process truck GPS data without the GIS software. The GIS-based system allowed 

separation of a highway into segments with minimum size of 10 miles. The minimum 

segment size for the SQL-based system was 3-miles. It was found that smaller segments 

improved accuracy of average speed estimation. The author underlined the importance 

of trip filtering parameters and projection algorithms. The GIS-based system employed a 

¼ mile radius search method, while the SQL-based system used more complex snapping 

algorithm. Several deficiencies of the SQL-based system were mentioned (e.g., 

duplication of data in tables). According to the report, the ideal FPM system should include 

the SQL-server, capable to process data from external applications and visualize 

performance measures using a GIS - based software.   

Liao (Liao, 2009) evaluated performance of I-94/I-90 freight corridor between St. Paul, 

Minnesota (MN), and Chicago, Illinois (IL). GPS data for 12 months (May 2008-April 2009) 

were provided by ATRI. The raw data were processed in ArcGIS software, GPS points 

were snapped to the nearest route, and then the average TS was computed for each 3-

mile segment. The analysis was performed for the key corridor locations (i.e., St. Paul, 

O’Hare Airport, I-90 toll highway), including truck speed, volume, TT reliability, truck 

stops, truck stop duration, etc. Results indicated that average speeds declined in areas 

approaching Chicago from 55 mph to 40 mph and lower. The westbound traffic between 

St. Paul and Madison had higher speed standard deviation than the eastbound traffic. A 

significant speed standard deviation and the average speed drop were observed on I-90 

toll highway, leading to Chicago.  
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McCormack (McCormack, 2009) described how GPS data were used to improve 

performance of the Washington State (WA) freight network. LTT and its reliability were 

chosen as performance measures. The data were collected from various vendors. GPS 

records were received with frequencies, varying from vendor to vendor (every 30 

seconds, every half-mile, every 15 min, etc.). ATRI and FWHA developed a program, 

focusing on performance of interstate corridors. A specific algorithm was developed to 

define origin and destination of each trip, using stop time, travel distance, GPS signal 

quality, and location of travel. It was highlighted that some GPS points were removed as 

they provided erroneous data. In some cases truck information was known only every 15 

min. The author concluded that truck GPS data could be very useful for public agencies 

to evaluate conditions of busy freight corridors and to identify bottlenecks. 

The Washington Department of Transportation (WSDOT) outlined the main features of 

the Truck Performance Measure Program at the Washington State Transportation 

Commission (WSDOT, 2011). The WSDOT initiated this program in 2007. GPS data 

process and analysis are similar to the ones, described by McCormack (McCormack, 

2009). LTT and its reliability were selected as performance measures. The main objective 

of the program was to identify and rank bottlenecks at the WA State highways. Four 

criteria were developed for prioritizing highway segments for further improvements: 1) 

Truck speed below the congestion threshold (60% of posted speed limit); 2) Average 

speed; 3) Speed distribution; 4) Truck volume. The authors underlined that the program 

was efficient, and its future success would be highly dependent on the access to the data, 

owned by trucking companies. McCormack et al. (McCormack, et al., 2011) and 

McCormack & Zhao (McCormack, et al., 2011) conducted a similar study, using the same 

FPMs as McCormack (2009). The authors described the process of bottleneck 

identification and prioritization in WA. The overall procedure was subdivided into 5 parts: 

a) Segment the roadway; b) Add attribute information to the segments; c) Geo-locate the 

truck; d) Locate the bottlenecks; e) Rank the bottlenecks. 

Chien et al. (Chien, et al., 2011) estimated link and path TT, variability of TT by departure 

time of the day and days of the week for 18 New Jersey highway corridors. The data were 

collected from GPS enabled devices, installed into different vehicles, traveling along 

considered highways between October 8, 2007 and April 21, 2008 from 6.15 am to 8.15 

am during weekdays. The buffer index (BI) and 95th TT percentile were calculated for 

each route. Results indicated that TT on the most of roads followed a shifted log-normal 

distribution. The lowest mean TS was found for a segment NJ 208 & NJ 4 (28.3 mph), 

while the highest one was determined for a segment NJ 24 & I-78 (59.9 mph). The highest 

TT coefficient of variation (TTCV) was calculated for a segment US 46 & NJ 3 during A.M. 

peak hour (TTCV=0.4). The lowest TTCV was estimated for US 1 (TTCV=0.09). The 

scope of research didn’t include assessment of incident impacts on link/path TT due to 

data limitations.  



47 
 

Cortes et al. (Cortes, et al., 2011) used GPS data to evaluate performance of a bus 

transportation system in Santiago, Chile. Data were collected for 6,178 buses operating 

over a one week. The authors applied a path rectification procedure to determine paths 

for each route. The path rectification identified line segments that were located close to 

GPS points with an acceptable error. Rectified paths were separated for grid elements. 

An average bus TS was calculated for each grid element. The report presented speed 

diagrams illustrating bus speeds for each route segment during a given time of day. The 

proposed methodology was found to be efficient for problem identification in bus 

operations (e.g., low speeds at certain segments, congestion issues, improper traffic light 

times, etc.).   

The Federal Highway Administration (FHWA) Office of Freight Management and 

Operations (FHWA, 2011) developed a Freight Performance Measures (FPM) web Tool 

to evaluate performance of the US freight corridors using truck GPS data. The FPMweb 

Tool estimates the operating speed of a given segment by averaging over the total 

number of speed observations. The segment length was assumed to be 3 miles. The tool 

can process data by time and date for 25 interstate corridors. Several drawbacks of the 

tool were mentioned: 1) it doesn’t provide commodity and origin-destination data; 2) it is 

not capable to forecast future truck volumes and speeds; 3) it is useful for analysis of 

average and not individual truck TS. 

Figliozzi et al. (Figliozzi, et al., 2011) developed an algorithm for assessing TT reliability 

of the I-5 interstate in Oregon (OR). GPS data were provided by ATRI. The corridor was 

separated into particular segments. Traffic flows were estimated for every mile and 

direction of each segment. Smoothing was performed by averaging counts for 20-miles 

segments. Volumes were also determined for different seasons of the year. Segments 

were analyzed based on two factors: a) time of the year and corresponding weather 

conditions, and b) truck density pattern along the segment. The designed algorithm was 

able to estimate 95%, 80%, and 50% percentile TT for each segment (if traffic counts 

were sufficient at considered segment) using GPS data. Minimum and maximum TS limits 

(10 mph and 80 mph) were set to remove outliers. Results indicated that differences 

between three types of TT (i.e., 95%, 80%, and 50% percentile TT) were significant for 

urban areas and relatively small for rural areas. TT costs per mile were calculated and 

presented in the paper. 

Wheeler & Figliozzi (Wheeler, et al., 2011) assessed effects of recurring and non- 

recurring congestion on freight movement characteristics (LTS, LTT, and TT reliability) at 

the Oregon I-5 Interstate (the same freeway as studied by Figliozzi et al., 2011). Along 

with GPS data, the authors used corridor TT loop data and incident data (provided by the 

Oregon DOT). A specific methodology was developed to identify through trucks (that don’t 

make any stops and provide at least two GPS readings in the beginning and in the end 
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of the corridor). Results of a recurring congestion analysis indicated that the highest TT 

and TTCV were observed during evening peak. As for non-recurring congestion, it was 

found that incidents significantly affected truck TS in the incident area throughout the day. 

Congestion cost estimates indicated that daily delay costs for freight vehicles were 19% 

higher that free-flow costs without variability consideration (and 22%-31% higher with 

variability consideration). GPS data were found to be more accurate in estimating TT than 

the loop sensor data. 

Blazquez (Blazquez, 2012) addressed the problem of snapping GPS points to roadways 

segments. Various techniques, resolving spatial ambiguities, were listed (e.g., semi-

deterministic map-matching, probabilistic map-matching, fuzzy logic map-matching, 

Kalman filter approach, etc.). The author developed a topological map-matching algorithm 

for snapping GPS points. The algorithm was able to identify a feasibility of the path 

between two snapped points (by comparing a speed along the path and the average 

vehicle speed). Numerical experiments were conducted using the data, collected by 

winter maintenance vehicles in Wisconsin (WI) and Iowa (IA). Preliminary calculations 

were performed to determine the buffer size. Results demonstrated the efficiency of the 

presented methodology. It was found that the GPS spatial error decreased the 

percentage of solved cases on average by 30%. Frequent sampling intervals provided 

more accurate results. An increasing number of consecutive GPS points improved 

performance of the algorithm. 

Liao (Liao, 2014) used GPS data, provided from ATRI for twelve months in 2012, to 

estimate FPMs, such as truck mobility, delay, and reliability index, and to identify 

bottlenecks for 38 key freight corridors in the Twin Cities metropolitan area (TCMA). To 

validate the methodology the computed average truck speeds and hourly volume 

percentage at certain locations were compared with the data from weight-in-motion (WIM) 

sensors and automatic traffic recorders (ATR). Truck bottlenecks were identified and 

ranked based on hours of delay and number of hours with TS less than the target speeds, 

set by Minnesota DOT during A.M. and P.M. peak hours. Also the truck congestion cost 

was estimated for TCMA to be $212 and $286 million annually based on ATRI’s truck 

operation cost and Texas Transportation Institute’s (TTI) truck congestion cost 

respectively. As another part of the study, one month data from FHWA’s National 

Performance Management Research Data Set (NPMRDS) was used to compute freight 

mobility and speed variations along Minnesota’s National Highway System. 

Wang et al. (Wang, et al., 2014) suggested naïve and mapping methods to estimate LTT 

using GPS data. The naïve method computed the average TS and its variability on each 

link individually. The variability was measured by a standard deviation. The authors 

presented a mathematical formulation for a mapping method with an objective, minimizing 

the total difference between the recorded trip times and the estimated trip times for all 



49 
 

trips. Both methodologies were tested on the San Antonio corridor (TX) and the 

Milwaukee highway corridor (WI). The mapping method was found to be more efficient, 

since it was able to analyze truck trips with large road intervals covering multiple links. 

Gong et al. (Gong, et al., 2015) used truck GPS data to estimate link travel times a 

highway corridor in Wisconsin using a regularized regression model that maximizes the 

likelihood of obtaining the observed trip travel time while penalizing changes in speeds 

on adjacent links. Trip travel time is the duration between two successive timestamps and 

trip length is obtained as the roadway length traversed. Basic assumption of the model is 

that travel speed of a trip is constant along a link while a trip traverses several partial/full 

links. The proposed method results were found to outperformed results obtained from a 

simple OLS regression and a benchmark method. Namely, one hour traffic data collected 

from double loop detectors was used for validation and it was found that regularized 

regression method improves the travel time allocation results from the benchmark 

method, trip travel time allocation errors decrease as link speeds grow and travel time 

allocation error increases as variation of speed within link grows. 

Mishra et al. (Mishra, et al., 2015) used truck GPS data provided by ATRI to calculate link 

based FPMs on Tennessee freight network. The study provides a guideline on how GPS 

data should be preprocessed and pinpoints possible problems researchers may face with 

this type of data. Besides estimating link FPMs the GPS data was used to develop turn 

times regression models for different types of freight facilities, calculate occupancy and 

entry/exit volumes. The researchers also developed two algorithms to analyze truck trips. 

The first one identifies intercity truck trips having as input the TN TAZs while the second 

one detects inter and intracity trips and their characteristics (dwell times, traffic light stops 

etc). 

2.3.2 TTT Focus 
McCormack & Hallenbeck (McCormack, et al., 2005) suggested two data collection 

methodologies to evaluate truck movements along particular roadway corridors in WA 

and to measure performance of freight mobility improvement projects against 

benchmarks. The first approach was based on implementation of Commercial Vehicle 

Information System and Networks (CVISN) electronic truck transponders, which were 

installed on the windshields of approximately 20,000 trucks. A specific program was 

designed to estimate TTT using the data, provided by transponders. Another technology 

employed GPS devices that transmitted truck movement records every 5 seconds. The 

information, collected using CVISN and GPS, was processed to identify congested 

segments, TTT, and TT reliability. It was highlighted that both techniques might be 

efficient for analysis of truck trip patterns. However, selection of a methodology should 

depend on the data required for a particular benchmark project. 
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Greaves & Figliozzi (Greaves, et al., 2008) processed passive GPS data from 30 trucks 

to identify characteristics of freight movements in the Greater Melbourne region, Australia. 

The authors underlined difficulties of getting GPS data from trucking companies. The GPS 

device was installed into each truck and provided second-by-second information. The trip 

identification algorithm was developed to determine trip ends. Around 5% of records were 

inaccurate due to loss of satellite signal and were excluded. The final output of the 

processed data included a summary for all truck trips and tours. The average number of 

stops per tour was found to be 12.2 stops. The lowest average TS were observed for 

morning and evening peak hours. A trip length distribution was presented in the paper. It 

was mentioned that GPS data didn’t provide additional information about driver behavioral 

features (respond to weather, empty/loaded vehicle, type of commodity, etc.) that might 

be useful for the analysis. 

NCHRP Report 008 (2010) highlighted the importance of truck GPS data for evaluation 

of freight corridors performance. The study was conducted for the following metropolitan 

areas: Los Angeles (California CA), Chicago (IL), Phoenix (Arizona AZ), and Baltimore 

(Maryland MD). GPS records were used to identify the number of stops during the trip, 

distance between stops, stop purpose, stop location, TT between stops, etc. It was found 

that likelihood of making trip in the tour depended both on the truck trip purpose in the 

current and subsequent stops. Besides, the information about trip origin, origin land use, 

and trip destination could be used to predict the destination land use. The highest percent 

of stops in industrial land use (27%) was observed in Chicago. Retail and commercial 

land use stops were more common in Los Angeles (31%). The most of residential land 

use stops occurred in Phoenix (31%). 

Bassok et al. (Bassok, et al., 2011) demonstrated how truck GPS data, collected from the 

device vendors, could be used for the analysis of freight movements in the WA area. The 

authors developed an algorithm for identifying trip ends. Truck stops for refueling, rest 

and delivery were filtered out (dwell time threshold comprised 180 sec, which is a common 

standard in WA). A threshold speed limit of 5 mph was set to determine trip ends. The 

analysis was performed for 91 days in the Puget Sound region (WA), when 2,400 trucks 

made 22,000 tours and 215,000 individual trips. Results indicated that each truck made 

on average 9 tours and 10 trips per tour. Besides, around 2 truck trips at each tour were 

made to grocery stores. Areas with higher population density produced more truck trips.  

Golias et al. (Golias, et al., 2012) used truck GPS data to analyze freight movements 

within the Greater Memphis area in TN. Available data provided information about truck 

trips from September 1, 2011 to October 30, 2011. The highest truck volumes on I-40 

were observed during evening peak hour between 4 pm and 5 pm. Trip durations were 

increasing for a period since 10 pm until 8 am. This was explained by the fact that most 

of truck drivers stopped for rest during that time interval. Truck turn times were considered 
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for 4 types of facilities: public warehouses, private warehouses, distribution centers, and 

intermodal facilities. The authors developed regression models predicting facility turn 

times depending on the truck volume per time interval and facility type. The overall fit of 

proposed models was found to be low due to small sample size. Intermodal facilities and 

private warehouses demonstrated the best fit. The scope of research included truck stop 

and rest stop demand analysis. All truck stops with duration from eight to twelve hours 

were considered. The authors provided frequency of truck stops based on the time of the 

day for major TN rest stop areas.  

Pinjari et al. (Pinjari, et al., 2012) (Pinjari, et al., 2012) (Pinjari, et al., 2013)  investigated 

how GPS data, provided by ATRI, could be used for assessing performance of freight 

corridors and transportation planning in Florida (FL). The study was directed to identify 

FPMs for state highways, build a truck-trip database to understand truck travel patterns, 

and derive truck trip O-D tables for the Florida Statewide Model. Several FPMs were 

suggested, such as average trip TS (TTS), reliability measures (TTI and Planning Time 

Index PTI), analysis of chokepoints, truck flow analysis, etc. Truck flows were estimated 

by month of the year and by day of the week. It was found that seasonal variations of 

truck speeds were not significant. However, travel patterns during weekdays were 

different as compared to weekend travel patterns. Trip Origin Destination Identification 

algorithm was designed to define O-Ds. The procedure was validated based on 

comparison with Google Earth and discussions with ATRI and FDOT.  Trip length and trip 

duration distributions were provided in the report.  

You (You, 2012) studied tour-based models for drayage trucks at San Pedro Bay Ports 

in Southern California area. The main objective was to develop a methodology, which 

could help to alleviate congestion of trucks at the gates, reduce truck turn times at the 

ports, and mitigate environmental impacts. A tour-based approach was found to be more 

efficient for modeling behavior of drayage trucks than a single trip-based approach. GPS 

data for 545 drayage trucks was provided by the ports of Los Angeles and Long Beach. 

The collected data were processed to identify closed and open tours. It was observed 

that each truck made on average 1.7 tours and 6.2 stops per day. A typical tour TT lied 

between 3 and 9 hours. The author suggested two approaches to analyze trip-chaining 

behavior of drayage truck movements: 1) A disaggregate level tour-based model based 

on Sequential Selective Vehicle Routing Problem (SSVRP); 2) An aggregate level tour-

based model based on Entropy Maximization Algorithm (EMA). It was underlined that the 

SSVRP was more realistic approach for modeling drayage truck tours.  

Bierlaire et al. (Bierlaire, et al., 2013) used GPS data, generated by smartphone Nokia 

N95, for route choice modeling in the Lausanne area, Switzerland. The authors listed 

advantages (short warm-up time, full track of trips) and disadvantages (weak signals, not 

accurate data points in some cases, high energy consumption) of GPS capable phones. 
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A probabilistic map matching method was developed to estimate the likelihood of 

choosing a particular path based on the smartphone GPS data. A path with a higher log-

likelihood was more preferable among all alternative paths. Speed distributions were 

generated from the observed speed data. Data points with speeds less than 8 km/h were 

filtered out. Results obtained by the suggested approach were close to the ones, provided 

by the Mobility Meter (dedicated GPS device, carried by the person along with 

smartphone). 

Carrion & Levinson (Carrion, et al., 2013) assessed the effect of converting I-394 

(between Minneapolis and St. Paul, MN) High Occupancy Vehicle (HOV) lanes to High 

Occupancy Toll (HOT) lanes. The main objective was to determine a traveler’s respond 

to increasing TT reliability on HOT lanes. The GPS devices were installed in 54 vehicles 

to collect the detailed trip information. A 20-meter buffer was used for all roads. GPS 

points, located outside the buffer area were excluded. The authors developed an 

algorithm to identify the commute trips (from origin to home location, from destination to 

work location and vice versa). The preference of travelers for choosing tolled or non-tolled 

routes was analyzed using discrete choice models. The utility function included TT 

measures, travel cost, and socio-demographic factors. TT reliability was measured by 

standard deviation, shortened right range, and interquartile range. Results of study 

indicated that the desire of travelers to pay tolls for reliable routes was dependent on how 

they perceived reliability savings. 

Golias & Mishra (Golias, et al., 2013) used truck GPS data, provided by ATRI for the 

months of September and October 2011, to evaluate the impact of the new Hours of 

Service (HOS) rule for Commercial Motor Vehicles (CMV) drivers on traffic conditions 

using as case study a part of I-40 network between Memphis and Nashville, TN. Existing 

truck TTT and volume by time of day on a daily and weekly basis were computed by 

statistically analyzing the provided data, while future conditions were estimated for the 

shifted truck trips which had to be identified based on the new working hours. The Level 

of Service (LOS) for both cases was calculated based on the methodology suggested in 

Highway Capacity Manual with some adjustments because of the low percentage of data 

used. By comparing LOS in both cases it was found that the new HOS would worsen 

LOS, as truck volumes would increase at certain routes after each rest period, which 

might cause delays. 

Kuppam et al. (Kuppam, et al., 2014) demonstrated how truck GPS data could be used 

for Tour-Based Truck Travel Demand Modeling. The study was conducted based on GPS 

data for 22,657 trucks and 58,637 tours, purchased from ATRI. The number of tours for 

each truck was determined using the information about truck coordinates, changes in TT 

and TS. The accuracy of vehicle stops was checked using highway maps and Google 

Earth. The following Tour-Based Truck Models were developed for the Phoenix region 
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(AZ): tour generation, stop generation, tour completion, stop purpose, stop location, stop 

time of day choice. It was found that construction tours had lower tendency to making 

stops, while government-related tours were dedicated to making more stops. An 

increasing number of stops caused incompletion of tours for the majority of trucks. The 

purpose of the previous stop influenced duration of the next stop. 

2.3.3  Miscellaneous 
Fisher et al. (Fisher, et al., 2005) proposed a modeling framework to evaluate the Los-

Angeles County (CA) freight transportation network performance. The framework 

combined characteristics of logistics chain and tour-based models. Logistics chain 

models were found to be useful for cases, when particular types of goods were 

transported from the production points to the assigned destinations. Those models 

combined information from three layers: economic, logistics, and transport. Tour-based 

models were efficient to determine vehicle tours and trips without focusing on commodity 

type. Those models provided the following information: generation of tours by zone, 

number of stops during the tour, stop purpose, stop time, stop location, number of trips 

during the tour, etc. The suggested integrated framework was found to be promising for 

analysis of freight movements. 

Cambridge Systematics (Cambridge Systematics, 2007) indicated that GPS devices 

could be effectively employed along with travel diary surveys for data collection and 

understanding truck traveling patterns in urban areas. Several disadvantages of using 

diaries were mentioned: 1) process of data depends on willingness of drivers to complete 

the form, 2) lack of the contact information, 3) some vehicles may not be registered in the 

study area, 4) low response rates due to confidentiality issues, etc. GPS devices, installed 

into trucks, might be utilized to validate the data, collected from driver diaries (e.g., trip 

origin, trip destination, routing, speeds at particular road segments). However, GPS data 

don’t provide any information regarding commodity hauled, size of shipment, and type of 

carrier operation (e.g., truckload, LTL, private). Besides, high cost of GPS devices was 

found as a major implementation issue.  

NCHRP Report 818 (2008) suggested a set of performance measures that can be used 

to evaluate highway conditions. Performance measures were classified into two 

categories: individual measures (related to an individual traveler) and area measures 

(related to the area, region or corridor). Delay per traveler, TT, TTI, BI, and PTI were 

referred to individual measures. Area measures included total delay, congested travel, 

percentage of congested travel, congested roadway, and accessibility. The report also 

distinguished between the performance measures as primary and secondary depending 

on the analysis area. 
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Dong & Mahmassani (Dong, et al., 2009) developed a methodology for estimating TT 

reliability. TT reliability was associated with traffic flow breakdowns and delays. A 

probability distribution function for pre-breakdown flow rate was calibrated using field 

data, from I-405 Irvine freeway in CA. The normal distribution was the most suitable for 

the Jeffrey section of the freeway, while the Weibull distribution provided the best fit for 

the Red Hill section. The authors assumed a linear relationship between breakdown and 

pre-breakdown flow rates. The delay was estimated based on TTI and flow rate values. 

Numerical experiments were performed for I-405, and results indicated that the proposed 

concept was efficient for relieving congestion and TT delays. 

The Memphis Urban Area MPO (2013) conducted a Freight Peer to Peer Program 

meeting to exchange the best practices between regional freight industry stakeholders 

from public and private sectors, and also various transportation agencies. Establishment 

of performance measures for freight transport was found to be a very important aspect in 

prioritizing highway improvement projects. It was underlined that performance measures 

should be set at state level with assistance of regional agencies if necessary. 

Performance measures should take into consideration interests of both private and public 

sectors.  

Pinjari et al (Pinjari, et al., 2015) used GPS data provided by the American Transportation 

Research Institute (ATRI) to compute FPMs and develop algorithms that estimate truck 

trips and Origin-Destination (OD) matrices. Data consists of trucks traveled across Florida 

in a 4 month period. Based on truck id, GPS data for these trucks was also extracted from 

ATRI database for the rest of North America in order to track flows in and out of the state. 

GPS records information provide x, y coordinates, time and date, truck id and distance to 

the closest interstate, while a subset of the trucks had also spot speed information. A GIS 

polygon shape file with major truck stops (rest areas, weight stations etc.) was also used 

in this study. The developed algorithm identified potential stops (origin or destination) 

based on spatial movement, time gap and speed between consecutive observations for 

the same truck and eliminated possible stops less than dwell-time buffer, combined small 

trips (less than 1 mile) and discarded incomplete trips or trips with large time gap between 

observations. Then, it eliminated trip ends in major truck stops and breaks circuitous trips 

(ratio between air distance and cumulative geodetic distance from origin to destination 

less than a predefined value) into multiple ones. In the results trips were categorized in 3 

types: all trips (including trips outside Florida), FL-link trips (at least one end in Florida), 

and FL-only trips (both origin and destination in Florida). 

Besides truck trip characteristics, OD matrices for a part of the 6000 Florida TAZs were 

calculated and compared to travel times used in the Florida Statewide Model (FLSWM) 

and google maps. It has been found that factors that may affect the calculated travel 

distance and travel time are route choice, GPS data ping rate (time gap between two 
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consecutive GPS records), TAZ size, time of day and number of trips between ODs. 

Based on the results travel distances from ATRI data were smaller compared to FLSWM 

and google maps mainly because of the straight line distance approximation between two 

GPS points. The computed travel times were found to be higher when compared to google 

maps results but smaller compared to those extracted from FLSWM. 

Another part of this study was to examine the extent to which these trips capture observed 

traffic flows in Florida. Focus of the study was the truck type composition, the proportion 

of truck traffic flows captured by the GPS data and geographical differences in the data. 

Trucks that did not make at least one trip of 100 miles and trucks with more than 5 trips 

per day were classified as medium trucks and removed from the database. To determine 

the proportion of heavy truck traffic flows captured in ATRI data in Florida they were 

compared with observed truck traffic volumes from Telemetered Traffic Monitoring (TTM) 

sites in Florida. It was found that this coverage is 10% for heavy trucks, information used 

later to compute the seed matrix in the origin-destination matrix estimation (ODME) 

model. Other input to the model was a highway network of the study area, observed traffic 

flows on various links and OD matrices for travel volumes other than freight truck 

extracted from the FLSWM. Also, cells with zero flows in the seed matrix that was 

expected to have flows were corrected after aggregating from TAZs to county level. The 

ODME was evaluated for different assumptions (upper/lower bounds on trip number) and 

the results for one set of assumptions are presented in this study with acceptable 

validation results. 

Lee and Ross (Lee, et al., 2015) studied how truck GPS data can be utilized for freight 

demand forecast at the state and regional levels. ATRI GPS data for Atlanta and 

Birmingham was collected for eight weeks and used to develop a tour-based freight 

demand model at the state/regional level in conjunction with existing data sources, 

employment data and transport network. The model was divided in 7 sections. First, the 

Tour Generation Model produces truck tours in each TAZ based on zonal characteristics. 

This output was used to scale GPS data. Next, the Tour Main Destination Model 

calculates the probability of each zone being a primary destination for tours originating 

from all other zones and the Intermediate Stop Model calculates how many intermediate 

stops there are for each tour, if any, using a multinomial logit model and identifies 

destination zones for each intermediate zone. The Time of Day model splits tours into 

different time periods and the Trip Accumulator breaks tours into truck trips that are used 

as inputs to the Traffic Assignment model. Link volumes from the developed model were 

compared to Atlanta Regional Commission (ARC’s) trip based model and it was found 

that the new model assignment was closer to the reported traffic counts for the examined 

period. 
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Bernardin et al. (Bernardin, et al., 2015) used ATRI’s truck GPS data in Iowa and 

Tennessee to identify possible biases and calculate ODMEs. Data used consists of 8 

week truck observations for each quarter in 2012 and are already processed giving 

information for begin and end TAZs between two consecutive observations, distance, 

time, speed and status (moving/stopped). Further process of the data was needed to 

identify ODs for each sequence of moving records and discard bad data (GPS positional 

errors, partial trips, intrazonal trips greater than 30 miles). ODME algorithms applied use 

truck counts on the network and scaled raw ATRI trip table to represent the proper amount 

of VMT extracted from iTRAM. The results were analyze to evaluate if there were any 

biases on geographic regions or trip length. It was found that for Iowa there were no 

geographic biases but there was evidence of bias towards longer haul trips. Also, it was 

found that ATRI’s ODME trip table had a smaller RMSE when compared to iTRAM results 

which indicated that this data can be used to produce a better model than the existed. 
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2.3.4 Summary 
The following FPMs were identified as a result of conducted literature review: 

1. 90th and 95th percentile travel time (𝑡𝑝90% and 𝑡𝑝95%) 

2. Buffer index 𝐵𝐼 =
𝑡𝑝95%−�̅�

�̅�
 

where �̅� =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  - mean travel time; 𝑥𝑖  - travel time for the observation i; 

𝑁 – number of observations 

3. Buffer travel time 𝐵𝑇𝑇 = 𝑡𝑝95% − �̅� (minutes, hours) 

4. Planning travel time 𝑃𝑇𝑇 = 𝑡𝑝95% (minutes, hours) 

5. Planning travel time index 𝑃𝑇𝑇𝐼 =
𝑡𝑝95%

𝑥𝐹𝐹𝑆
 

where 𝑥𝐹𝐹𝑆 – free flow speed travel time 

6. Travel time index 𝑇𝑇𝐼 =
𝑥

𝑥𝐹𝐹𝑆
 

7. Travel time standard deviation 𝜎 = √(∑ 𝑥𝑖
𝑁
𝑖=1 −�̅�)2

𝑁−1
 

8. Travel time coefficient of variation 𝐶𝑉 =
𝜎

�̅�
 

9. Travel time range 𝑅𝑎𝑛𝑔𝑒 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

10. Ratio of mean travel time to median travel time 𝑟 =
�̅�

�̂�
  

where �̂� - median travel time 

11. Total segment delay 𝑇𝑆𝐷 = (𝑡𝑝95% − 𝑥𝐹𝐹𝑆) × 𝑉 (vehicles-minutes) 

where 𝑉 – volume of vehicles at the segment 

12. Congested travel 𝐶𝑇 = ∑ 𝐶𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ × 𝑉 (vehicles-miles) 

where 𝐶𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ – congested segment length 

13. Congested roadway 𝐶𝑅 = ∑ 𝐶𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ (miles) 

A few studies computed the average travel cost along with FPMs for considered highway 

corridors. Ando & Taniguchi (Ando, et al., 2006) estimated the total cost of link TT 

uncertainty and penalties due to early arrival/delayed arrival to customers, requesting a 

particular time window. Wheeler & Figliozzi (Wheeler, et al., 2011) and Figliozzi et al. 

(Figliozzi, et al., 2011) included TT, cost of traveling, and TT variability into the cost 

function. Several researches also assessed environmental impacts and emissions, 

produced by vehicles. Emissions were estimated based on the vehicle travel distance 

and the vehicle TS (see Ando & Taniguchi, 2006; Wheeler & Figliozzi, 2011). 
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3. DATA DESCRIPTION 

In this chapter we present the data collection and methodology used to analyze data in 

the CFIRE region.  

3.1 General Statistics by States 

The GPS data used in this study is provided by ATRI and consists of trucks traveling 

within three states: Tennessee, Mississippi and Alabama. This particular dataset 

description provides information on the data lying in the State of Tennessee. A total of 

55,798,200 truck observations were provided in the database with 835,183 unique trucks 

and include truck GPS data for 24 weeks for the years 2011-2014. The 24 weeks consists 

of two weeks for months of March, July and October for four years. Observations are not 

equally distributed between these 4 years. The majority of observations (34.62%) is for 

2014 (19,316,100 GPS points). Years 2013, 2012, and 2011 have 14,782,100, 

12,715,700 and 8,984,300 observations respectively. Figure 10 shows the percentages 

of data for individual years. 

 

Figure 10 Percentage of Observations per Year 

Further analysis revealed that observations were available for 3 months of each year: 

March, June and October with the latter having the most observations (19,959,700) 

followed by June (18,748,000 observations) and March (17,090,500 observations). The 

percentage split is presented in Figure 11. Data distribution by day of the week is shown 

in Figure 12. The majority (52.23%) of truck GPS data are observed between Tuesday 

and Thursday. The least number of observations are on Sunday (3,898,400) and 

Saturday (5,757,100) while Monday with 8,192,300 observations accounts for 14.68% of 

the data and Friday with 8,807,400 observations for 15.78%.   

16.10%

22.79%

26.49%

34.62%

2011 2012 2013 2014
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Figure 11 Percentage of Observations per Month 

 

Figure 12 Percentage of Observations per Day of the Week 

According to Memphis MPO a day can be divided in four different time periods based on 

the level of congestion. The AM peak period lasts from 6 am to 9 am, Midday period from 

9 am to 2 pm, PM peak from 2 pm to 6 pm, and Off-peak from 12am to 6am and from 6 

pm to 12pm. Figure 13 presents the data distribution over these peak periods. As 

expected Off-peak (20,728,600 observations) and Midday (15,765,600 observations) 

have the most truck observations. AM peak and PM peak data account for 7,697,700 and 

11,606,300 of observations respectively. 

30.63%

33.60%

35.77%

March June October

6.99%

14.68%

17.34% 17.52% 17.37%
15.78%

10.32%
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Figure 13 Percentage of Observations per Time of Day  

The descriptive statistics presented so far can be obtained from the information provided 

by the Probe Vehicle GPS Data Processing Tool. Further analysis can be conducted 

using any database management system to retrieve information and descriptive statistics. 

In this study PostgreSQL was used to further process the data and conduct the statistical 

analysis. The total number of observations per truck varied as the provided dataset was 

a random sample. The maximum number of GPS records for a single truck in a day is 

3611.The distribution of daily observations per single truck is shown in Figure 14. The 

majority of trucks had less than 30 observations in a day.  

 

Figure 14 Number of Daily Observations for a Single Truck 

13.80%

28.25%

20.80%

37.15%

AM peak Midday PM peak Off peak

25.81%

43.32%

56.66%

66.46%
73.79%

79.23%
86.45%

90.86%

100.00%
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The frequency of the transmitted GPS signal was not fixed, while a great percentage of 

the observations was transmitted from stopped trucks. In this study a truck was assumed 

stopped, if its spot speed was less than 5 mph. On an hourly basis 98.5% of the trucks 

had up to 19 observations (Figure 15), which translates to one observation per 3 minutes 

(stopped trucks included), while approximately 49% had less than 4 observations (i.e., 

one every fifteen minutes). It is also notable that a significant percentage (23.36%) of 

trucks had only one observation per hour. 

 

Figure 15 Number of Hourly Observations for a Single Truck 

The given data was analyzed for four time periods: i) AM Peak: 6am – 9am, ii) Midday 

Peak (MD): 9am – 2pm, iii) PM Peak: 2pm – 6pm, and iv) Off-peak (OP): 6pm – 6am. 

Truck distribution by day of the week and time of the day is presented in Figure 16. The 

majority of observations were obtained for the OP time period with Midday being the next 

largest (in means of truck observations) time period. The smallest amount of GPS records 

were transmitted during the AM peak hours, as it is also the time period with the least 

duration (3 hours). About 20-22% of observations were observed in the PM peak period. 

23.36%

34.09%
40.83%

49.10%
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81.83%
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Figure 16 Truck Distribution by Day of the Week and Time of the Day 

Figure 17 illustrates the percentage of stopped trucks in the four time periods.  The largest 

percentage of stopped trucks was observed during AM Peak period (36.15%) with Off 

Peak being next with 35.52% of trucks being stopped. Midday and PM peak periods had 

the smallest percentages, 32.16% and 31.08% respectively. 

 

Figure 17 Percentage of Stopped Trucks per Time of the Day 

Figure 18 shows that the largest percentage of stopped trucks in a day was observed 

during the OP time period for each weekday as expected since this period is the largest 

in a day with the majority of trucks belonging there. This percentage is even larger during 

Friday and Saturday (46.66% and 48.78%). On the contrary the percentage of stopped 
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trucks for the remaining time periods is decreased these two days compared to Sunday-

Thursday percentages. 

 

Figure 18 Stopped Truck Distribution by Day of the Week and Time of the Day 

3.2 Dataset description 

A sample is presented in Figure 19 and used to describe the available data. The following 

information was provided for each GPS record: 

 GPS waypoint (X and Y coordinates) 

 Time stamp 

 Heading 

 Spot speed 

 Truck Identifier 

 

Figure 19 Random Day GPS Data Display 
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Time stamps were given for Coordinated Universal Time (UTC) zone. The State of TN 

lies in two time zones: Central Daylight Time (CDT) zone and Eastern Daylight Time 

(EDT) zone. The local time should be estimated for each GPS point in order to conduct 

the analysis for specific time periods. The Extract Analysis Toolbox, of ESRI ArcGIS 

10.04,  was  used  to  assign  a  time  zone  to  each  observation  based  on  its  spatial 

disposition (see Figure 20). Once a time zone was determined for a GPS record, a local 

time was computed based on the difference between the given time zone and UTC zone. 

A daylight saving time for the year 2012 was considered as well. EDT zone was 4 hours 

behind UTC, while CDT zone was 5 hours behind UTC between March 11, 2012 and 

November 4, 20125. For the rest of the year EDT zone was 5 hours behind UTC, while 

CDT zone was 6 hours behind UTC. 

 

Figure 20 CDT and EDT Zones in TN 

One of eight possible headings was recorded for each observation: E, W, N, NE, NW, 

SE, and SW. A unique identifier was assigned to each truck as most trucking companies 

are not willing to share any information regarding their vehicles and type of commodity 

transported (Greaves & Figliozzi, 2008; McCormack et al., 2011; McCormack & Zhao, 

2011). 

  

                                                           
4 www.esri.com 

 
5 http://www.timeanddate.com/time/dst/2012.html 

http://www.timeanddate.com/time/dst/2012.html
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4. DATA PROCESSING METHODOLOGY 

4.1 Preprocessing Tool 

The GPS Data Processing and Extracting Tool, a standalone application, was developed 

to import and process raw truck GPS data, and extract data for certain time periods 

specified by the user. In this tool, the time stamp for each truck was changed to the local 

time based on the time zone (the GPS timestamp was in Coordinated Universal Time - 

UTC). The tool also filters data based on user input and exports processed data into shape 

file(s) and .csv file(s). The fields of time zones and local date/time are also appended 

to the output file(s). The tool accepts .csv and .txt files as input files. The tool can produce 

two output types of files: shape files and csv files.  

4.2 Associating GPS Records with Network/Zone 

In order to associate (or snap) GPS points on the network, the Proximity Analysis Toolbox, 

of ESRI ArcGIS 10.0, was used. In this study the Freight Analysis Framework (FAF) 

transportation network for the State of TN was evaluated. The FAF network includes 

3,393 road segments with average link length of 2.66 miles. Since truck GPS data did not 

include any information on the accuracy of the GPS devices, the worst case scenario of 

a quarter mile (as reported in the literature, see Jones et al., 2005; Schofield & Harrison, 

2007), was assumed. In theory, the search radius for snapping observations should be 

equal to sum of the device spatial error and the positional error of the used network. In 

FAF network this can be up to ±260 feet (FHWA, 2014). GPS records lying outside the 

search radius were discarded. 

4.3 Direction and Outlier Identification Algorithm (DOI) 

DOI algorithm was developed to address the issue of multiple directions of GPS truck 

records, associated with the same link. Figure 21 illustrates this issue with 17 

observations, snapped to link, having a total of six unique headings: E, N, NE, SW, SE, 

and W. These GPS records should be separated in two groups: 1) trucks moving from 

the link start point (with coordinates [xst, yst]) to the link end point (with coordinates [xend, 

yend]), and 2) trucks moving from the link end point to the link start point. Based on the 

link’s geometry those groups should be either NE or SW directions respectively. The 

major steps of DOI are as follows: 

DOI Steps 
Step 1: Load GPS data for a given day/time period 

Step 2: Associate each GPS record with a link (based on a predefined radius around 
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 each record) 

Step 3: Remove outliers6
 based on speed (if speed threshold is known) 

Step 4: For each link 

Step 4.1: Identify the number of unique truck headings 

Step 4.2: Separate observations in two groups based on the link spatial 

 disposition (see Figure 22) 

Step 4.3: Remove additional outliers based on the Chauvenet’s criterion 

 (optional) 

Next we present a small example to showcase how DOI is implemented. 

 

Figure 21 DOI for Resolving the Problem with Headings 

4.3.1 DOI Example 
Figure 9B provides an example of step 4.2. for a fictitious link. First, the start and end 

point coordinates for the given link are calculated. The link is then approximated by a 

straight line, connecting the start and end points. The next step calculates the angle (α), 

between the E-W axis and the straight line representing the link. The value of α can be 

estimated using line coordinates and trigonometric functions (e.g., arccosine, arcsine, 

arctangent, etc.). In the given example (see Figure 22) angle α lies between 0 and π/4, 

hence trucks with headings E, N, NE or SE will be assigned to the direction from B to A 

(BA) and trucks with headings W, S, SW or NW to the direction from A to B (AB). Groups 

                                                           
6 Observations with spot speeds less than 5 mph are considered as outliers. 
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of headings, contributing to BA and AB directions, for every possible angle α are 

presented in Figure 22 DOI Heading Assignment. 

 

Figure 22 DOI Heading Assignment 

4.3.2 Outlier Detection: Chauvenet’s Criterion 
Detection and removal of outlier GPS truck records is a crucial component of the analysis 

if accurate FPMs are to be calculated. Removal of outliers based on predetermined 

thresholds (e.g., 10 mph) may result in high misclassification of records during different 

time periods of the day (e.g., 10 mph may not be an outlier for peak periods). To escape 

the use of predetermined speed thresholds the Chauvenet’s criterion was adopted 

(Chauvenet, 1960). The criterion assumes that speeds follow a Normal Distribution, and 

observations are considered as outliers, if the probability of obtaining their deviation from 

the mean is less than 1/(2N), where N is the number of observations. 

4.3.3 FPM Calculation 
Once GPS records are associated with links, direction of truck movement has been 

assigned, and outliers have been detected and removed, preferred FPMs can be 

calculated using DOI. The list of FPMs, calculated in this study, includes TS (in each 

direction), TT, and TT reliability measures (90th percentile TT, 95th percentile TT, buffer 

TT or BTT, BTT index or BI, TT standard deviation or TTSD, TTCV, TT range, mean to 

median TT ratio). Average TS were computed based on spot speeds available from GPS 

truck data. This approach was chosen as most of consecutive GPS points for a given 

truck belong (for the majority of the trucks) to different links (i.e., link length and the mean 

time interval between observations cannot be used to calculate average TS). Once FPMs 

are calculated for all links, it will be possible to identify areas, where bottlenecks occur for 

a given time period. 
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4.3.4 DOI Validation 
DOI was validated on the FAF network with LTS obtained from the FPMweb Tool. Data 

for the I-40 section in TN was retrieved from the FPMweb Tool for 36 days (3 consecutive 

weekdays for each month of 2012). Average LTS over 3 days of each month were 

computed for four time periods (see section 3.1.1). Then average LTS were estimated 

using DOI for the same links and time periods. Results of a comparative analysis indicated 

that the differences between LTS, provided by the FPMweb Tool, with the ones, 

calculated by DOI, were not significant (less than 5% on average). Differences were 

mostly observed on short links (< 3 mi) and could be possibly caused by snapping errors. 

Note that DOI can be applied to any network (not only FAF), and its accuracy will depend 

on length and shape of each roadway segment. 

4.4 Origin-Destination Identification Algorithm (ODIA) 

ODIA was developed to estimate the number of truck trips between traffic analysis zones 

(TAZs) in the State of TN. Along with truck trips additional information can be retrieved 

(e.g., start trip time, end trip time, trip duration, etc.). Once GPS records are loaded, ODIA 

filters out observations with spot speeds greater than a set value (=5 mph), and leaves 

for analysis only those observations (with spot speeds ≤5 mph), which can be potentially 

either origins or destinations. Then the algorithm sorts all trucks by IDs and observations 

for each truck by their time stamps in the ascending order. Next ODIA starts an iterative 

process, which consists in checking TAZ for each observation of a given truck. If TAZp 

and TAZs
7
  for two consecutive GPS records are the same, it is more likely that no trips 

were made by the truck. When two consecutive observations have different TAZp and 

TAZs, ODIA marks the preceding record as “ORIGIN”, while for the succeeding record the 

algorithm checks if it is a genuine destination. If there is only one consecutive observation 

with TAZs, ODIA marks that observation as “DESTINATION”. If there is a group of GPS 

records with the same TAZs as TAZs, the algorithm calculates the total travel distance 

between those observations. If the distance does not exceed ¼ mile (GPS spatial error), 

ODIA marks the earliest observation of this group as “DESTINATION”. Otherwise (the 

distance >¼ mile), the truck was most probably still traveling (e.g., traffic light stop). Note 

that travel distance between two consecutive GPS points was computed based on their 

coordinates. The procedure continues until all observations for all trucks are analyzed. 

Final ODIA output also contains full Origin-Destination (OD) matrix. The main ODIA steps 

are outlined next. 

ODIA Steps 

Step 0: Initialize origin-destination matrix 𝑂𝐷 =⊘ 

Step 1: Load GPS data for a given day/time period 

                                                           
7 TAZp denotes TAZ for a preceding observation; TAZs denotes TAZ for a succeeding observation 
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Step 2: Remove observations with spot speeds greater than a set value (=5 mph) 

Step 3: Sort GPS data based on truck IDs and time stamps (in the ascending order) 

Step 4.0: For each truck t set observation i=0 

Step 4.1: Select observation i=i+1 

Step 4.2: Does the next observation (i.e., i+1) have the same TAZ 

If YES - go to Step 4.1 

Else go to Step 4.3 

Step 4.3: Flag observation i as “ORIGIN”, record trip start time 

Step 4.4: Count the total number of observations j≥i+1 with the same TAZ as i+1 

and denote it as Q 

Step 4.5: Is Q greater than 1 

If YES – go to Step 4.6 

Else flag observation i+1 as “DESTINATION”, record trip end time, count 

trip ( , 𝑇𝐴𝑍𝑖+1) = 𝑂𝐷(𝑇𝐴𝑍𝑖 , 𝑇𝐴𝑍𝑖+1) + 1 and go to Step 4.8 

Step 4.6: Compute the total travel distance between consecutive observations 

i+1, i+2,…,i+Q and denote it as D 

Step 4.7: Is D greater than a set value (=¼ mile) 

If YES – go to Step 4.8 

Else flag observation i+1 as “DESTINATION”, record trip end time, count 

trip ( , 𝑇𝐴𝑍𝑖+1) = 𝑂𝐷(𝑇𝐴𝑍𝑖 , 𝑇𝐴𝑍𝑖+1) + 1 and go to Step 4.8 

Step 4.8: Is i+Q the last observation for truck t 

If YES – go to Step 4.9 

Else go to Step 4.1 

Step 4.9: It truck t the last 

If YES – go to Step 5 

Else go to Step 4.0 and set t=t+1 

Step 5: Retrieve necessary truck trip data 

4.5 Hours of Delay Methodology 

The following methodology has been used to calculate the Hours of Delay (HOD). First, 

the Link Travel time (LTT) of trucks in each link is calculated for the three time periods 

(AM, MD and PM) using the following formulation: 
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𝐿𝑇𝑇 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐿𝑖𝑛𝑘

𝐿𝑖𝑛𝑘 𝑆𝑝𝑒𝑒𝑑
 

Then the free flow travel time (FFTT) of trucks in each link is calculated using the following 

formulations: 

𝐹𝐹𝑇𝑇 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐿𝑖𝑛𝑘

𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑆𝑝𝑒𝑒𝑑
 

Once both the travel times are obtained, finally, the hours of delay are calculated by 

multiplying the truck volume on that particular link with the difference of the two speeds 

using the following formulation: 

𝐻𝑂𝐷 = 𝑉𝑜𝑙𝑢𝑚𝑒 × (𝐿𝑇𝑇 − 𝐹𝐹𝑇𝑇) 

4.6 Congested Lane Miles Methodology 

The congested lane mile (CLM) is defined as the total number of lane miles with 

congested travel. The following notations clearly defines the congested lane mile (CLM): 

𝐶𝐿𝑀 = {
∑ 𝐿𝑖

𝑛

𝑖=1

  ∃   𝑆(𝐿𝑖) < 𝐹𝐹𝑆(𝐿𝑖)

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤ℎ𝑒𝑟𝑒,                                                               

𝐶𝐿𝑀 = 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝐿𝑎𝑛𝑒 𝑀𝑖𝑙𝑒 

𝐿𝑖 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝐿𝑖𝑛𝑘 𝑖 (𝑖𝑛 𝑚𝑖𝑙𝑒𝑠) 

𝑆(𝐿𝑖) = 𝑇𝑟𝑢𝑐𝑘 𝑠𝑝𝑒𝑒𝑑 𝑎𝑡 𝑙𝑖𝑛𝑘 𝑖 

𝐹𝐹𝑆(𝐿𝑖) = 𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑 𝑎𝑡 𝑙𝑖𝑛𝑘 𝑖 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠 

The following methodology has been used to calculate the congested lane mile (CLM). 

First, the average speed of trucks in each link has been identified for the three time 

periods (AM, MD and PM). Then the obtained link speed is compared with the free flow 

speed of trucks. In this study, the free flow speed is assumed to be the link speed during 

off-peak period which is from 6 PM to 6 AM. If the link speed is found to be greater than 

the free flow speed, then it is certain that the mentioned link is congested at that time 

period. 
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5. FREIGHT PERFORMANCE MEASUERS 

The methodology described in the previous section (for estimating link based freight 

performance measures) was applied to the FAF network in the State of TN using truck 

GPS data (provided by ATRI) for selected weekdays of each month over the years of 

2011 to 2014. The research team developed a geodatabase (that is available upon 

request) containing all the link-based performance indicators described in the 

methodology section. Figure 23 through Figure 44 show examples of maps that can be 

produced using the developed geodatabase. Next we present a case study that will 

showcase how the developed database can be used in practice.  

5.1 Case Study 

A case study was conducted for the State of TN using the truck GPS data, provided by 

ATRI, for Mondays-Wednesdays-Fridays of March 2014. The GPS data were retrieved 

using the GPS Data Processing and Extracting Tool. A total of 2,920,043 GPS records 

were available for 24,039 trucks. Next we present several examples of FPMs that can be 

produced using the developed “GPS-based FPMs Estimation” toolbox. 

5.1.1 Link-based FPMs 
The first analysis aimed to estimate link-based FPMs for the roadway segments in TN. 

The Freight Analysis Framework (FAF) was used as a transportation network. The FAF 

network has 3,393 roadway segments with the average link length of 2.66 miles. Two 

time periods were considered (22, 28): AM peak period (6 am – 9 am) and PM peak 

period (2 pm – 6 pm). Scripts “LinkFPMs”, “CLM”, and “HOD” of the developed ArcGIS 

toolbox were executed using the retrieved GPS data for the AM and PM peak periods to 

calculate the average travel speeds, congested lane miles, and hours of delay 

respectively. Results are presented in Figure 45 and Figure 46 for all roadway segments 

of the FAF network in TN. Link-based FPMs were not calculated for 32.4% and 26.9% of 

links for AM and PM peak periods respectively, as the GPS data were not available (those 

links are colored in black, see Figure 45). We observe that traveling speeds at the major 

TN freight corridors (i.e., I-24, I-40, I-65, and I-81) are greater than 60 mph and are close 

to FFTS. Furthermore, hours of delay for the most of links do not exceed 2.00 

vehicles·hours. However, reduction in travel speeds and increase in hours of delay are 

observed at links in the vicinity of large metropolitan areas (i.e., Memphis, Nashville, 

Knoxville, and Chattanooga).  
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Figure 23 Average Truck Volume for AM Peak Period Friday June 2011-2014 
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Figure 24 Average Speed for AM Peak Period Friday June 2011-2014 
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Figure 25 Average Travel Time for AM Peak Period Friday June 2011-2014 
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Figure 26 Average 90th Percentile Travel Time for AM Peak Period Friday June 2011-2014 
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Figure 27 Average 95th Percentile Travel Time for AM Peak Period Friday June 2011-2014 
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Figure 28 Average Buffer Travel Time for AM Peak Period Friday June 2011-2014 
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Figure 29 Average Buffer Index for AM Peak Period Friday June 2011-2014 
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Figure 30 Average Travel Time Standard Deviation for AM Peak Period Friday June 2011-2014 
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Figure 31 Average Travel Time Coefficient of Variation for AM Peak Period Friday June 2011-2014 
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Figure 32 Average Travel Time Range for AM Peak Period Friday June 2011-2014 
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Figure 33 Average Mean to Median Travel Time Ratio for AM Peak Period Friday June 2011-2014 
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Figure 34 Average Travel Time for June 2014 
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Figure 35 Average Travel Time for March 2014 
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Figure 36 Average Travel Time for October 2014 
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Figure 37 Average Travel Time for AM Peak Period Friday June 2011-2014 
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Figure 38 Average Travel Time for MD Peak Period Friday June 2011-2014 
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Figure 39 Average Travel Time for PM Peak Period Friday June 2011-2014 
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Figure 40 Average Travel Time for Off-Peak Period Friday June 2011-2014 
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Figure 41 Hours of Delay in Direction A for AM Peak Period Friday June 2011-2014 
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Figure 42 Hours of Delay in Direction B for AM Peak Period Friday June 2011-2014 
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Figure 43 Levels of Congestion in Direction A for AM Peak Period Friday June 2011-2014 
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Figure 44 Levels of Congestion in Direction B for AM Peak Period Friday June 2011-2014 
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Figure 45 Average TS for AM and PM Peak Periods 
 

Hours of Delay 

 

Figure 46 Hours of Delay for AM and PM Peak Periods 
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Now, we present the freight performance measures, such as average travel time (ATT), 
average 95th percentile travel time 9 (ATT 95%), average buffer index (ABI) and average 
travel time standard deviation (ATT-STD), Hours of delay (HOD) and contested lane miles 
(CLM), for each functional class (FC). These freight performance measures are averaged 
for each facility type to determine seasonal variation, peak and off-peak travel time variation 
travel time reliability, level of congestion etc. The result is presented for four years 2011-
2014, three months -March, June and October, days of week categorized into Monday, 
Tuesday-Thursday, Friday, Weekends (Saturday-Sunday), and four time periods (AM, MD, 
PM, OP). The results are then compared to each other to identify any possible pattern/trend 
as shown in Table 7 - Table 14. Figure 47 breaks down the case study network into different 
functional classes. It can be noticed that several facility types such as rural major collector, 
urban minor arterial, collector and local have very few sample size (i.e. 1, 30, 12 and 7 
segments respectively). Hence, the performance indicators obtained for these facility types 
may not be very reliable.    
  
Table 7 FPMs by Month and Functional Class 

 ATT (hrs) ATT 95th Percentile (hrs) ABI (hrs) ATT-STD (hrs) 

FC June March October June March October June March October June March October 

0 0.13 0.13 0.13 0.22 0.22 0.22 0.59 0.59 0.60 0.05 0.06 0.06 

1 0.05 0.04 0.04 0.10 0.09 0.09 0.83 0.79 0.78 0.02 0.02 0.02 

2 0.11 0.11 0.11 0.23 0.23 0.23 0.81 0.78 0.78 0.06 0.06 0.06 

6 0.17 0.17 0.17 0.32 0.32 0.32 0.71 0.70 0.70 0.08 0.08 0.08 

7 0.26 0.26 0.24 0.43 0.37 0.35 1.83 0.81 0.60 0.17 0.11 0.10 

11 0.02 0.02 0.02 0.03 0.03 0.03 1.03 1.00 1.00 0.01 0.01 0.01 

12 0.05 0.05 0.05 0.11 0.11 0.11 1.08 1.04 1.06 0.03 0.03 0.03 

14 0.07 0.07 0.07 0.16 0.15 0.16 0.97 0.94 0.95 0.04 0.04 0.04 

16 0.04 0.05 0.04 0.09 0.09 0.09 0.87 0.84 0.84 0.02 0.02 0.02 

17 0.04 0.04 0.04 0.10 0.10 0.10 1.53 1.48 1.49 0.03 0.03 0.03 

19 0.03 0.03 0.03 0.05 0.05 0.05 0.66 0.70 0.69 0.01 0.01 0.01 

   
Table 8 By month comparison 

 June vs. October June vs. March March vs. October 

FC 
ATT 
(hrs) 

ATT 
95% 
(hrs) 

ABI 
(hrs) 

ATT-
STD 
(hrs) 

ATT 
(hrs) 

ATT 
95% 
(hrs) 

ABI 
(hrs) 

ATT-
STD 
(hrs) 

ATT 
(hrs) 

ATT 
95% 
(hrs) 

ABI 
(hrs) 

ATT-
STD 
(hrs) 

0 -1.18% -3.05% -2.41% -4.84% -2.44% -2.78% -0.15% -3.35% 1.23% -0.27% -2.25% -1.44% 

1 1.77% 6.08% 6.13% 9.27% 1.11% 4.33% 5.15% 6.83% 0.67% 1.83% 1.03% 2.62% 

2 0.65% 1.65% 3.41% 1.90% 0.28% 1.39% 3.87% 1.21% 0.37% 0.26% -0.48% 0.70% 

6 1.06% 0.31% 1.76% 1.22% 0.88% 1.09% 2.59% 1.34% 0.18% -0.79% -0.85% -0.12% 

7 6.56% 17.06% 66.94% 39.59% -1.63% 12.22% 55.52% 35.37% 8.06% 5.52% 25.68% 6.54% 

11 0.66% 1.44% 3.16% 2.47% 0.66% 2.02% 3.67% 2.47% 0.00% -0.59% -0.53% 0.00% 

12 0.63% 0.00% 2.20% 0.69% -0.21% -0.09% 3.33% 0.35% 0.84% 0.09% -1.17% 0.35% 

14 0.00% 0.13% 1.81% 0.45% -0.15% 0.84% 3.01% 1.13% 0.15% -0.71% -1.24% -0.69% 

16 0.22% 0.23% 3.76% 1.33% -0.22% 0.70% 3.95% 1.77% 0.44% -0.47% -0.20% -0.45% 

17 0.56% 0.87% 3.08% 1.60% 0.00% 0.58% 3.24% 0.96% 0.56% 0.29% -0.16% 0.65% 

19 -0.32% -4.43% -3.42% -8.65% -2.57% -5.84% -4.68% -10.58% 2.19% 1.33% 1.21% 1.74% 
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Table 9 FPMs by Days of week and Functional Class 

 
ATT (hrs) ATT 95th Percentile (hrs) ABI (hrs) ATT-STD (hrs) 

FC Mon Tue-Thu Fri Sat-Sun Mon Tue-Thu Fri Sat-Sun Mon Tue-Thu Fri Sat-Sun Mon Tue-Thu Fri Sat-Sun 

0 0.12 0.13 0.13 0.13 0.22 0.23 0.23 0.22 0.62 0.64 0.63 0.60 0.06 0.06 0.06 0.06 

1 0.04 0.04 0.04 0.04 0.09 0.09 0.09 0.09 0.79 0.81 0.81 0.78 0.02 0.02 0.02 0.02 

2 0.11 0.11 0.11 0.11 0.23 0.23 0.23 0.23 0.85 0.83 0.83 0.78 0.06 0.06 0.06 0.06 

6 0.17 0.17 0.17 0.17 0.33 0.32 0.32 0.32 0.73 0.74 0.73 0.70 0.08 0.08 0.08 0.08 

7 0.24 0.25 0.25 0.24 0.45 0.37 0.36 0.35 0.89 0.61 0.61 0.60 0.15 0.11 0.11 0.10 

11 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.03 1.04 1.09 1.08 1.00 0.01 0.01 0.01 0.01 

12 0.05 0.05 0.05 0.05 0.11 0.11 0.11 0.11 1.13 1.12 1.12 1.06 0.03 0.03 0.03 0.03 

14 0.07 0.07 0.07 0.07 0.16 0.16 0.16 0.16 1.01 1.00 0.99 0.95 0.05 0.05 0.05 0.04 

16 0.04 0.04 0.04 0.04 0.08 0.09 0.09 0.09 0.85 0.87 0.87 0.84 0.02 0.02 0.02 0.02 

17 0.04 0.03 0.03 0.04 0.10 0.10 0.10 0.10 1.56 1.58 1.58 1.49 0.03 0.03 0.03 0.03 

19 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.71 0.72 0.72 0.69 0.01 0.01 0.01 0.01 

 

Table 10 By Days of week comparison 

 Mon vs. Tue-Thu Mon vs. Fri Mon vs. Sat-Sun 

FC ATT (hrs) 
ATT 95% 

(hrs) 
ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI (hrs) 
ATT-STD 

(hrs) 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI (hrs) 
ATT-
STD 
(hrs) 

0 4.55% 5.14% 2.41% 3.14% 4.96% 4.31% 0.34% 1.05% 4.39% 2.25% -3.80% -1.75% 

1 -0.45% -0.77% 3.56% -0.54% -0.23% 0.00% 3.36% 0.54% 0.23% 0.22% -0.65% 1.09% 

2 -0.75% -1.07% -1.87% -2.17% -0.56% -1.11% -2.27% -2.17% 0.00% -3.17% -7.53% -5.18% 

6 -4.44% -1.86% 0.97% -1.88% -4.09% -1.98% 0.16% -2.36% -3.00% -2.68% -3.87% -4.36% 

7 7.03% -16.55% -31.38% -31.16% 4.45% -18.77% -31.38% -31.16% 1.99% -20.86% -32.35% -34.75% 

11 0.00% 1.72% 4.47% 2.44% 0.67% 2.59% 4.06% 2.44% 0.00% -1.72% -3.69% -3.66% 

12 -2.66% -2.89% -0.92% -3.57% -2.86% -3.15% -1.58% -4.22% -2.86% -5.16% -6.93% -6.82% 

14 -1.45% -0.75% -0.59% -1.31% -1.45% -0.88% -1.20% -1.53% -1.01% -2.63% -5.66% -3.72% 

16 -0.89% 1.65% 1.99% 3.67% -0.89% 1.30% 1.78% 3.21% -0.22% 0.94% -1.40% 2.29% 

17 -2.54% 0.58% 1.21% 0.98% -2.26% 0.39% 1.42% 0.98% 0.28% -0.10% -4.58% 0.00% 

19 -6.01% -3.83% 2.37% -2.50% -6.31% -4.19% 1.56% -3.33% -6.31% -5.46% -2.62% -5.83% 
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Table 10 By Days of week comparison (Continued) 

 
Tue-Thu vs. Fri Tue-Thu vs. Sat-Sun Fri vs. Sat-Sun 

FC 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

0 0.39% -0.79% -2.02% -2.03% -0.16% -2.75% -6.07% -4.74% -0.54% -1.98% -4.13% -2.76% 

1 0.23% 0.78% -0.20% 1.09% 0.68% 1.00% -4.06% 1.64% 0.45% 0.22% -3.88% 0.54% 

2 0.19% -0.04% -0.41% 0.00% 0.76% -2.12% -5.77% -3.08% 0.57% -2.08% -5.38% -3.08% 

6 0.36% -0.12% -0.80% -0.48% 1.51% -0.84% -4.80% -2.52% 1.14% -0.72% -4.03% -2.05% 

7 -2.41% -2.66% 0.00% 0.00% -4.71% -5.16% -1.42% -5.21% -2.35% -2.57% -1.42% -5.21% 

11 0.67% 0.85% -0.40% 0.00% 0.00% -3.39% -7.81% -5.95% -0.66% -4.20% -7.45% -5.95% 

12 -0.21% -0.27% -0.67% -0.67% -0.21% -2.34% -6.07% -3.37% 0.00% -2.08% -5.44% -2.71% 

14 0.00% -0.13% -0.62% -0.22% 0.44% -1.89% -5.10% -2.44% 0.44% -1.77% -4.51% -2.22% 

16 0.00% -0.35% -0.21% -0.44% 0.67% -0.70% -3.32% -1.33% 0.67% -0.35% -3.12% -0.89% 

17 0.29% -0.19% 0.21% 0.00% 2.90% -0.67% -5.72% -0.97% 2.60% -0.48% -5.92% -0.97% 

19 -0.32% -0.38% -0.79% -0.85% -0.32% -1.70% -4.88% -3.42% 0.00% -1.33% -4.12% -2.59% 

 

Table 11 FPMs by Days of week and Functional Class 

 ATT (hrs) ATT 95th Percentile (hrs) ABI (hrs) ATT-STD (hrs) 

FC 2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014 

0 0.13 0.13 0.13 0.13 0.20 0.21 0.22 0.22 0.49 0.54 0.57 0.60 0.05 0.05 0.05 0.06 

1 0.04 0.04 0.04 0.04 0.09 0.09 0.09 0.09 0.70 0.74 0.77 0.78 0.02 0.02 0.02 0.02 

2 0.11 0.11 0.11 0.11 0.22 0.22 0.22 0.23 0.68 0.72 0.74 0.78 0.05 0.05 0.06 0.06 

6 0.17 0.17 0.17 0.17 0.31 0.31 0.32 0.32 0.62 0.65 0.67 0.70 0.08 0.08 0.08 0.08 

7 0.23 0.27 0.25 0.24 0.37 0.37 0.35 0.35 0.64 0.61 0.61 0.60 0.10 0.11 0.11 0.10 

11 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.86 0.91 0.94 1.00 0.01 0.01 0.01 0.01 

12 0.05 0.05 0.05 0.05 0.10 0.10 0.11 0.11 0.88 0.94 0.99 1.06 0.03 0.03 0.03 0.03 

14 0.07 0.07 0.07 0.07 0.15 0.15 0.15 0.16 0.80 0.86 0.89 0.95 0.04 0.04 0.04 0.04 

16 0.05 0.04 0.04 0.04 0.08 0.08 0.08 0.09 0.69 0.74 0.78 0.84 0.02 0.02 0.02 0.02 

17 0.05 0.04 0.04 0.04 0.10 0.10 0.10 0.10 1.10 1.22 1.35 1.49 0.03 0.03 0.03 0.03 

19 0.04 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.51 0.58 0.64 0.69 0.01 0.01 0.01 0.01 
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Table 12 By year comparison  

 
2011 vs. 2012 2011 vs. 2013 2011 vs. 2014 

FC 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

0 1.03% 2.80% 9.97% -0.78% 2.23% 8.26% 16.28% 6.63% 2.15% 9.54% 22.43% 9.75% 

1 0.90% 4.48% 6.12% 7.65% 0.68% 5.06% 10.10% 9.41% 0.45% 4.83% 11.95% 9.41% 

2 -0.73% 1.53% 5.88% 1.11% -1.19% 2.83% 8.94% 2.22% -2.11% 4.97% 15.49% 5.00% 

6 -0.06% 1.46% 4.75% 0.00% 0.06% 2.60% 8.62% 0.50% -0.71% 3.67% 13.76% 1.37% 

7 18.18% -0.24% -4.12% 6.13% 12.09% -3.80% -4.12% 6.13% 7.02% -4.29% -5.48% 0.60% 

11 1.36% 0.30% 4.81% -1.30% 2.04% 0.91% 8.79% 0.00% 2.04% 3.64% 15.97% 2.60% 

12 -0.21% 2.18% 7.03% 2.63% 0.21% 5.56% 13.54% 6.39% -0.63% 7.65% 20.47% 7.89% 

14 -0.85% 3.29% 7.42% 2.90% -1.98% 4.38% 11.45% 4.11% -3.26% 6.37% 18.20% 6.28% 

16 -4.89% 1.49% 7.52% 5.45% -5.32% 1.87% 12.98% 7.43% -4.68% 6.34% 21.24% 10.40% 

17 -6.86% 0.99% 11.21% 2.45% -15.49% 2.07% 23.52% 6.99% -21.46% 1.68% 35.60% 7.34% 

19 -4.44% -0.77% 13.85% 7.84% -9.44% -1.35% 26.23% 6.86% -13.33% 0.19% 35.64% 10.78% 

 
Table 12 By year comparison (continued) 

 2012 vs. 2013 2012 vs. 2014 2013 vs. 2014 

FC 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

0 1.18% 5.31% 5.74% 7.47% 1.10% 6.55% 11.33% 10.61% -0.08% 1.18% 5.29% 2.93% 

1 -0.22% 0.55% 3.75% 1.64% -0.45% 0.33% 5.49% 1.64% -0.22% -0.22% 1.68% 0.00% 

2 -0.46% 1.28% 2.89% 1.10% -1.39% 3.38% 9.08% 3.85% -0.93% 2.08% 6.02% 2.72% 

6 0.12% 1.12% 3.70% 0.50% -0.65% 2.18% 8.60% 1.37% -0.77% 1.05% 4.73% 0.87% 

7 -5.15% -3.56% 0.00% 0.00% -9.44% -4.05% -1.42% -5.21% -4.52% -0.51% -1.42% -5.21% 

11 0.67% 0.60% 3.80% 1.32% 0.67% 3.32% 10.65% 3.95% 0.00% 2.70% 6.60% 2.60% 

12 0.42% 3.30% 6.08% 3.66% -0.42% 5.34% 12.55% 5.13% -0.84% 1.98% 6.10% 1.41% 

14 -1.14% 1.06% 3.75% 1.17% -2.43% 2.98% 10.03% 3.29% -1.30% 1.90% 6.06% 2.09% 

16 -0.45% 0.37% 5.07% 1.88% 0.22% 4.78% 12.76% 4.69% 0.67% 4.40% 7.31% 2.76% 

17 -9.26% 1.07% 11.07% 4.44% -15.68% 0.68% 21.93% 4.78% -7.07% -0.39% 9.79% 0.33% 

19 -5.23% -0.58% 10.88% -0.91% -9.30% 0.97% 19.14% 2.73% -4.29% 1.57% 7.45% 3.67% 
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Table 13 FPMs by Time of day and Functional Class 

 ATT (hrs) ATT 95th Percentile (hrs) ABI (hrs) ATT-STD (hrs) HOD (veh-hrs) CLM 

FC AM MD PM OP AM MD PM OP AM MD PM OP AM MD PM OP AM MD PM AM MD PM 

0 0.13 0.13 0.13 0.13 0.21 0.23 0.22 0.22 0.47 0.62 0.60 0.61 0.05 0.06 0.06 0.06 2.33 1.92 1.93 0.74 0.66 0.62 

1 0.04 0.04 0.04 0.04 0.09 0.09 0.09 0.09 0.70 0.78 0.78 0.79 0.02 0.02 0.02 0.02 5.61 11.38 25.34 0.72 0.70 0.74 

2 0.11 0.11 0.11 0.11 0.23 0.24 0.23 0.23 0.69 0.86 0.78 0.80 0.06 0.06 0.06 0.06 3.29 3.62 3.32 0.79 0.75 0.69 

6 0.19 0.17 0.17 0.17 0.31 0.33 0.32 0.32 0.58 0.76 0.70 0.72 0.08 0.09 0.08 0.08 4.07 3.05 2.87 0.81 0.73 0.67 

7 0.06 0.26 0.24 0.25 0.06 0.40 0.35 0.39 0.00 0.55 0.60 0.55 0.00 0.11 0.10 0.10 0.00 0.19 0.00 0.00 1.00 1.00 

11 0.02 0.01 0.02 0.01 0.04 0.04 0.03 0.03 0.93 1.02 1.00 0.96 0.01 0.01 0.01 0.01 5.30 4.98 8.59 0.94 0.85 0.86 

12 0.05 0.05 0.05 0.05 0.11 0.11 0.11 0.11 0.89 1.12 1.06 1.07 0.03 0.03 0.03 0.03 3.77 2.87 3.10 0.89 0.76 0.70 

14 0.07 0.07 0.07 0.07 0.15 0.16 0.16 0.16 0.78 1.00 0.95 0.97 0.04 0.05 0.04 0.04 3.20 3.58 3.07 0.81 0.85 0.75 

16 0.05 0.04 0.04 0.05 0.08 0.09 0.09 0.09 0.71 0.86 0.84 0.86 0.02 0.02 0.02 0.02 1.95 0.76 5.78 0.90 0.67 0.50 

17 0.04 0.03 0.04 0.04 0.10 0.10 0.10 0.10 1.22 1.56 1.49 1.47 0.03 0.03 0.03 0.03 4.90 1.07 0.17 0.67 0.50 0.33 

19 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.54 0.67 0.69 0.67 0.01 0.01 0.01 0.01 0.91 1.35 0.39 0.86 1.00 0.71 

Table 14 By time of day comparison  

 MD vs. AM PM vs. AM OP vs. AM 

FC 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-
STD 
(hrs) 

HOD  
(veh-
hrs) 

CLM 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

HOD  
(veh-
hrs) 

CLM 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

0 -3.91% 9.52% 32.84% 19.35% -17.55% -10.39% -3.31% 7.68% 27.78% 14.66% -17.06% -16.45% -3.76% 7.15% 30.51% 15.07% 

1 -0.67% 2.71% 11.50% 5.82% 102.71% -2.77% -0.89% -1.30% 11.10% -1.59% 351.26% 3.24% -1.56% -2.27% 12.67% -3.17% 

2 -5.89% 6.41% 25.45% 7.03% 9.98% -4.84% -6.24% -0.04% 13.81% -2.74% 0.91% -12.22% -6.33% 0.97% 16.52% -1.20% 

6 -9.48% 6.35% 31.08% 12.98% -25.04% -10.21% -9.42% 1.72% 20.91% 4.37% -29.40% -17.48% -9.32% 2.46% 23.39% 5.40% 

7 314.45% 542.70% - - - - 286.52% 466.45% - - - - 302.57% 522.47% - - 

11 -6.88% -6.12% 9.72% -8.70% -6.17% -9.71% -6.25% -9.04% 8.13% -14.13% 61.93% -8.58% -10.00% -13.83% 3.78% -19.57% 

12 -6.05% 7.08% 26.74% 11.19% -23.87% -14.46% -7.23% 2.26% 19.09% 3.61% -17.57% -21.69% -7.03% 3.58% 21.24% 6.14% 

14 -5.49% 8.13% 28.02% 9.79% 12.09% 5.05% -6.18% 4.37% 21.17% 5.01% -3.90% -7.02% -6.59% 5.17% 24.34% 5.97% 

16 -6.13% 5.53% 21.82% 8.21% -61.03% -25.92% -5.29% 5.04% 18.73% 7.73% 196.34% -44.44% -4.23% 6.14% 22.07% 9.66% 

17 -7.71% 3.28% 27.26% 2.29% -78.26% -25.00% -5.59% 2.38% 21.43% 0.33% -96.58% -50.01% -3.72% 2.58% 20.40% -0.33% 

19 0.00% 6.05% 23.73% 11.88% 47.63% 16.67% -2.50% 4.64% 26.82% 11.88% -57.67% -16.66% 0.31% 5.04% 24.64% 8.91% 
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Table 14 By time of day comparison (continued) 

 MD vs. PM MD vs. OP PM vs. OP 

FC 
ATT 
(hrs) 

ATT 95% 
(hrs) 

ABI 
(hrs) 

ATT-
STD 
(hrs) 

HOD  
(veh-hrs) 

CLM 
ATT 
(hrs) 

ATT 
95% 
(hrs) 

ABI 
(hrs) 

ATT-STD 
(hrs) 

ATT 
(hrs) 

ATT 
95% 
(hrs) 

ABI 
(hrs) 

ATT-
STD 
(hrs) 

0 0.63% -1.68% -3.80% -3.92% 0.59% -6.77% 0.16% -2.16% -1.75% -3.58% -0.47% -0.49% 2.14% 0.36% 
1 -0.22% -3.90% -0.36% -7.00% 122.61% 6.18% -0.90% -4.85% 1.05% -8.50% -0.68% -0.99% 1.41% -1.61% 
2 -0.37% -6.07% -9.28% -9.13% -8.25% -7.75% -0.47% -5.11% -7.12% -7.69% -0.09% 1.02% 2.38% 1.59% 
6 0.06% -4.35% -7.76% -7.62% -5.82% -8.09% 0.18% -3.66% -5.87% -6.71% 0.12% 0.72% 2.05% 0.99% 
7 -6.74% -11.86% 9.56% -7.06% -100.00% 0.00% -2.87% -3.15% -0.87% -3.71% 4.15% 9.89% -9.52% 3.60% 

11 0.67% -3.12% -1.45% -5.95% 72.57% 1.25% -3.36% -8.22% -5.41% -11.90% -4.00% -5.26% -4.02% -6.33% 
12 -1.25% -4.49% -6.04% -6.82% 8.27% -8.45% -1.04% -3.26% -4.34% -4.55% 0.21% 1.29% 1.80% 2.44% 
14 -0.73% -3.48% -5.35% -4.35% -14.26% -11.49% -1.16% -2.73% -2.87% -3.48% -0.44% 0.77% 2.61% 0.91% 
16 0.90% -0.47% -2.54% -0.45% 660.38% -25.00% 2.03% 0.58% 0.21% 1.34% 1.12% 1.05% 2.82% 1.79% 
17 2.31% -0.87% -4.59% -1.92% -84.29% -33.34% 4.32% -0.67% -5.40% -2.56% 1.97% 0.19% -0.85% -0.65% 
19 -2.50% -1.33% 2.49% 0.00% -71.32% -28.57% 0.31% -0.95% 0.73% -2.65% 2.88% 0.39% -1.72% -2.65% 

 

 

Figure 47  Case study network by functional class 
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5.2 O-D Based Reliability 

Reliability has become a significant performance measure of the transportation system in a 

region. Travel time reliability, presented in the form of descriptive statistics derived from the 

distribution of travel times is a critical indication of the operating conditions of any network. 

Even though many past studies have tried to measure behavioral response to travel time 

reliability, their application in a transportation-planning context is limited. In the planning 

stage, agencies often would like to utilize available resources to estimate travel time 

reliability using existing tools; hence, a framework to measure path-based reliability to 

calculate network-wide reliability using available data will be very useful, and is currently 

lacking in the literature. The objective of this study is to model O-D based freight reliability 

using truck GPS data considering ideal, recurring and non-recurring travel conditions to 

assist short term transportation planning and operations decision making. This study 

contributes to the freight literature by (1) measuring travel time reliability for each O-D pairs, 

and (2) assessing reliability variation in the event of non-recurring congestion.  

5.2.1 Methodology 
The methodological framework for computing and predicting path-based truck travel time 

reliability is shown in Figure 48. The first task is to collect GPS data for multiple days for the 

study area. Typical truck GPS data consists of latitude, longitude of the truck, time stamp, 

speed, and heading (direction). The next task is to attach the GPS data to the network. 

Once the GPS data is attached to the network the next task is to determine the shortest 

path for each O-D pair and corresponding links associated with the shortest path. The 

shortest path is calculated using free flow travel time. Since the GPS data includes speed 

of the truck, travel times for each link can be computed. The path travel time is obtained by 

aggregating the link travel time over the links used in traversing the shortest path. Since 

travel times will be affected by recurring and by non-recurring congestion, travel times need 

to be separated by each type. Travel time reliability measures for each path can be 

determined by replicating the procedure and collecting data for multiple days. Reliability 

measures including but not limited to 95th percentile travel time, standard deviation, and 

coefficient of variation can be determined for each path. Path based reliability can be helpful 

in number of ways such as incorporating travel time reliability in travel demand models, and 

short term travel time predictions.  

In this study, travel time reliability is compared for three different travel conditions: ideal, 

recurring and non-recurring congestion. Ideal travel conditions consider the free flow travel 

time and when compared with other conditions help to identify the variations in travel time. 

Recurring congestion refers to primarily the travel condition mostly associated with roadway 

network operating at over-capacity. This type of congestion is not affected by external 
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factors such as inclement weather, crash etc. Non-recurring congestion occurs due to 

construction, severe weather, crashes, and special events. In this study we only considered 

crashes as the external factor behind non-recurring congestion. Comparing three different 

travel conditions will allow us to capture the variability in travel time and identify the O-D 

pairs, which are mostly affected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Framework for Computing and Predicting Truck Travel Time Reliability 
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5.2.2 Study Area 
The proposed framework was applied in Shelby County, TN. Figure 49 shows zone, FAF 

network, and truck GPS data for one day. For computing reliability, the shortest path is 

considered for each O-D pair. Once path based travel time and travel time reliability were 

determined a number of combinations of relationship were attempted.  

 

Figure 49 Shelby County with its census tracts, FAF network, and Truck GPS data 

5.2.3 Travel time vs. Trip length 

The comparison of travel time for different trip length in different travel conditions during 

weekdays for a particular interval is shown in Figure 50. The maximum distance between 

an O-D pair was approximately 40 miles. In ideal condition, a 40-mile trip can be covered 

in 34-36 minutes. If there is recurring congestion same trip length would require 46-48 

minutes. During non-recurring congestion due to crash, it can take up to 72 minutes. 

Comparing different scenarios allowed use to capture the variability in travel time for a given 

O-D pair. Similarly, Figure 51 shows the comparison of travel time for different trip length in 

different travel conditions on weekends during a given period of time (7-8 a.m.). The free-
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flow condition doesn’t vary between weekdays and weekends since we consider single 

value of free-flow time for each link. If there is recurring congestion, same trip length of 40 

miles would require 40-42 minutes. During non-recurring congestion due to crash, it can 

take up to 52-58 minutes. It can be noticed that during the weekends the variability is 

significantly smaller compared to weekdays. Similar results can be obtained for different 

time of day and the findings are similar. 

 
Figure 50 Travel Time vs. Trip Length (on Weekdays) during 7-8 a.m. 

 
Figure 51 Travel Time vs. Trip Length (on Weekends) during 7-8 a.m. 
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5.2.4 Standard Deviation vs. Time of Day 

To capture the variability over time of day, standard deviation of travel time and 95 

percentile travel time is plotted against the time of day. Figure 52 and Figure 53 show the 

variation due to recurring and non-recurring congestion respectively. It can be seen that 

there is significantly larger deviation during non-recurring congestion compared to recurring 

congestion.   Two noticeable peaks con be observed suggesting relatively large standard 

deviation during mid-day (11 am – 12pm) and PM peak hours (5pm-7pm). Standard 

deviation of 95% travel time also follows the similar pattern but with much larger variation 

among the observations. 

 
Figure 52 Standard Deviation (Recurring) by Time of Day 

 
Figure 53 Standard Deviation (Non-recurring) by Time of Day 
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5.2.5 Effect of Crash Severity on Travel Time  
The degree of effect of a crash on non-recurring congestion significantly depends on it 

severity. For June 2014, there were total 103 crashes that occurred on the given FAF 

network in Shelby county. 82 were property damage only (PDO), 19 crashes resulted in 

some injury and only 2 crashes resulted in incapacitating injury. There were no fatal 

crashes. It should be noted that, a single crash can effect multiple O-D pair as mentioned 

in the methodology that once a crash occurs on a link, all the O-D pairs which involve that 

particular link are considered to be affected.  From Figure 54, it can be observed that, 

crashes involving injury have significant effect on travel time comparing to PDO crashes 

only. It is found that, 53% of the time a crash involving injury would increase the travel time 

significantly compared to PDO. It should also be noted that effect of crash does not only 

depend on severity, but it also depends on number of vehicles involved, incident type, 

clearance time etc.  

 

Figure 54 Effect of Crash Severity on Travel Time (Non-Recurring Congestion Only) 
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5.3 Analysis of Major Stop Locations by States 

5.3.1 Data Collection 

In this section we present the methodology for the data preparation. First we present the 

steps to identify the truck parking rest areas for the case study area. Second, we explain 

the procedure for extracting the polygon area of a rest area sample and how to utilize these 

polygons to extract the truck parking counts. Finally, we explore the additional dataset that 

was collected for analysis and model development.  

5.3.2 Identification of Rest Areas 

The first step is to identify the truck parking areas for the study area. This is done by 

obtaining the USA rest area map that features the locations of over 2000 highway rest areas 

across the U.S. The locations are the coordinates for the entrance to the off ramp for the 

rest areas. From this shape file, the rest areas that belong to the required study area were 

obtained. A total of 46 rest areas are found within the case study area shown in Figure 55. 

Once the rest areas were identified, the base map of the U.S. with imagery was loaded and 

the rest area locations were identified. Next, three types of polygons were created over the 

rest area of each location which includes parking area, off-ramp and on-ramp (shown in 

Figure 56). 

 

Figure 55 Rest Areas in Tennessee 
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           55(a) Sample Rest Area Location             55(b) Parking Area Polygon 

    
                     55(c) Off-ramp polygon               55(d) On-ramp Polygon 

Figure 56 Polygon Extraction from Rest Area Location 

5.3.3 Identification of Parked Trucks 
The next step is to determine the number of trucks parked within the three polygons of a 

particular rest area (shown in Figure 56). The major steps for this procedure are as follows: 

Step 1: First, the truck GPS data (shown in Figure 55(a)) from ATRI (American 
Transportation Research Institute) was processed for the study area using Vehicle 
Probe GPS Data Processing Tool. This tool provides functions to produce refined 
set of data from a large data set to be used in other modules. 

Step 2: The refined truck dataset was loaded in ArcGIS and trucks with the speed being 
less than or equal to five miles per hour were identified using SQL tool embedded 
in the attribute table in ArgGIS. 

Step 3: The stopped trucks data were exported in Microsoft Excel and then coordinate 
pairs (latitude and longitude combinations) of those stopped trucks were identified 
using a common identification number called TRUCKID.  

Step 4: Once the unique stopped trucks were identified using the TRUCKID, their 
coordinates were projected in ArcGIS. 
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Step 5: Finally, using the rest area polygons, the number of trucks parked in the 
respective locations were identified and recorded (shown in figure 55(b). 

The trucks parked on the on ramp and off ramp were needed to find the on/off ramp violation 

criterion which is used as a categorical variable in the model presented. These are indicator 

variables that indicated whether the truck was parked on ramp or off-ramp at that particular 

time period. When the truck drivers see trucks parked off-ramp, in order to avoid congestion 

and save time, sometimes they choose not to park thinking that the parking space might be 

full. It is also difficult to maneuver trucks when plenty of them are parked off ramp. On the 

other hand, when the truck drivers park on ramp, it means either the parking space was full 

or to save time maneuvering from the parking spot, they park on ramps so that they can 

exit and hit the road as quickly as possible. Moreover, some of the trucks might have met 

with crash or collision due to which they might park on and off ramp.  

 

Figure 57 Sample GPS Data 
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Figure 58 Parked Trucks on Rest Area Location 

The ATRI data used for this study consisted of observations for 3 months in the year 2014. 

Each month comprised of two weeks of truck data. A total of 46368 (i.e. 46x24x42) set of 

observations were collected, each of the 46 locations with 24 hours and for 42 days. Table 

15 shows the frequency distribution of the number of trucks parked on all the 46 rest areas 

which shows the predominance of zero number of trucks parked at the locations (50%). 

This is because of the low percentage of observations provided. 

Table 15 Frequency Distribution of Truck Utilization 

No. of Parked Trucks Count (%) 

0 23,185 50.00% 

1 7,666 16.53% 

2 7,659 16.52% 

>= 3 7,858 16.95% 

Total 46,368 100.00% 

5.3.4 Collection of Additional Data 
Additional data was collected such as average speed of the truck traffic passing on the 

adjacent roadway of that particular rest area, the number of lanes of the roadway adjacent 
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to the rest area, and hourly precipitation of the location from the National Climatic Data 

Center (NCDC). Rest area characteristics such as availability of rest rooms, vending 

machines, pets’ facilities, picnic tables, phone services and handicapped facilities were also 

collected. These variables were used as categorical variables where unavailability of these 

features indicated 0 and availability was indicated as 1. The reason why average speed is 

included is because there might be congestion at the road beside the rest area which might 

affect the truck parking. If the average speed of the trucks passing the rest area is lower, it 

indicates congestion and hence might affect truck parking. Hence the effect of average 

speed was included in the model. The hourly precipitation would help identify if precipitation 

has any significant effect on the truck utilization, that is, if the truck drivers prefer to park at 

the rest area during rain or continue to drive. Similarly, the rest area characteristics would 

also give valuable information as to whether these have any effect on the truck utilization. 

However, most of these variables were insignificant in the estimated models. 

Table 16 and Table 17 shows the descriptive statistics and frequency distribution of the 

response and explanatory variables used in the model respectively. These are, (a) Speed 

– whether the average speed of the trucks passing the rest area location is 65 miles per 

hour or greater. 65 miles per hours was chosen because it is the speed limit of highways in 

most cases. (b) Number of lanes – whether the number of lanes of the roadway adjacent to 

the rest area in consideration were 2 or more than 2 (c) On ramp – whether there were any 

trucks parked on the on ramp of the rest area during that time period (d) Off ramp – whether 

there were any trucks parked on the off ramp of the rest area during that time period (e) 

Days of the week when the trucks were parked at the rest area. Table 2b shows that about 

99.7 % of the time, the trucks passing the rest area usually travel at an average speed of 

65 miles per hour or less. In addition, it can be seen that the on ramp and off ramp violation 

are evenly distributed and 82.62% of the observations had trucks parked at the rest area 

adjacent to the 2 lane roadway. Also, about 71.43% of the trucks were parked during 

weekdays. 

Table 16 Descriptive Statistics of Explanatory Variables 

Variable Mean Std. Dev. Minimum Maximum 

Number of trucks parked 1.0043 1.1596 0 7 

Volume (Vph) 32.0887 18.9001 1 259 

Average speed (mph) 23.0612 10.2253 6 84 

On ramp 0.5016 0.5 0 1 

Off ramp 0.4991 0.5 0 1 
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Table 17 Frequency Distribution of Explanatory Variables (Categorical) 

Explanatory Variable (%) 

Speed 
Less than or equal to 65 mph 99.70% 

Greater than 65 mph 0.30% 

Number of Lanes 
2 Lanes 82.61% 

> 2 Lanes 17.39% 

On ramp 
No 49.84% 

Yes 50.16% 

Off ramp 
No 50.09% 

Yes 49.91% 

Weekday 
Mon-Fri 71.43% 

Sat-Sun 28.57% 

 

5.3.5 Model Estimation Results 

In this section, we first discuss the effects of explanatory variables on the number of trucks 

parked, then the variable effects on the propensity and on the thresholds that affect the 

translation of propensity to whether or not a truck is parked at any given time. Next we 

discuss the model fit comparisons and finally discuss the elasticity effects and model 

validation. 

The results section presents the statistically significant explanatory variables along with 

their estimated coefficients and t-statistics (in parenthesis) for each of the developed models 

as shown in Table 18. Four models are developed: Poisson (Model 1), negative binomial 

(NB) (Model 2), Poisson with propensity (Model 3), and Poisson with propensity and 

threshold specific constant (Model 4). Given that there is no a priori reason for the mean 

and variance in any practical context to be equal, the use of a NB distribution for Model 2 is 

an important empirical generalization over the Poisson distribution (Model 1). Model 2 is a 

regular NB model whereas Model 3 and 4 are Poisson models that include threshold 

parameters which take heterogeneity across observations into account by allowing some of 

the parameters to vary across observations. Model 4 is similar to Model 3 except it contains 

threshold specific constants to allow more flexibility and better predictive accuracy. 

By comparing the model results, it can be observed that due to significance of the dispersion 

parameter, the negative binomial model is more effective in prediction than the Poisson 
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model. However, as the variable “number of lanes (=2)” is added to the propensity equation, 

there is no longer dispersion in the model. Therefore, the negative binomial is collapsing 

back to Poisson model with Propensity. The dispersion parameter becomes large (implying 

low dispersion) with the variable “number of lanes (=2)” in the propensity. Hence, the model 

is able to explain variance using explanatory variables without dispersion parameters and 

therefore Poisson with propensity performs better than the NB model. Hence Model 3 and 

Model 4 are Poisson with propensity and propensity with threshold respectively.  

The variables that have significant effect on truck parking utilization include truck volume, 

on ramp, off ramp, average speed, number of lanes, hour 1, hour 2, hour 6, hour 13, hour 

19, hour 21, and Thursday. It can be noticed that the mean values of parameter estimates 

are similar in sign in all the four models. The results indicate that higher truck volume is 

more likely to increase the truck parking utilization at the rest areas. The on ramp and off 

ramp variables indicate that with on ramp and off ramp parking violation, the truck parking 

utilization will likely decrease. This is intuitive because when truck drivers enter a rest area 

for parking and when they observe trucks being parked on the ramps, it becomes difficult 

for them to maneuver the vehicle and they will likely avoid such rest areas. Moreover, they 

may also assume that the truck parking might be full and continue driving to find the next 

location. On the other hand, it can also be instinctive that the parking capacity must be full 

which lead the drivers to park on the ramps. It is also conceivable that the truck drivers park 

on the on ramps for easy and quick exit on the roadway. The speed indicates that with the 

average speed of trucks passing the rest area being equal to or lower than 65 mph is more 

likely to decrease the truck parking utilization on the rest area. The number of lanes indicate 

that the roadway adjacent to the rest area having two lanes have more likelihood to increase 

the truck parking utilization at the rest area because higher number of lanes is usually 

accompanied with high traffic flow. The positive coefficient of hour 1 suggests that truck 

parking utilization increases during the period 12 AM – 1 AM which is intuitive since the 

truck drivers at this time try to find spots for parking and resting. On the other hand, the 

results show negative coefficients for hour 2, hour 6, hour 13, hour 19 and hour 21. This 

suggests that during the period 1 AM – 2 AM (hour 2),  truck parking utilization reduces 

which is also intuitive since most of the parking spots are usually filled during the previous 

hour and the truck drivers spent more time searching for a spot. They either park on the 

ramps or try to move ahead and search a spot at the next location. During the period 5 AM 

– 6 AM (hour 6), truck parking utilization decreases since most truck drivers start their trip 

either early or during this period from the parking spot after having a good night’s rest. 

Similarly, during the period 12 PM – 1 PM (hour 13), truck parking utilization reduces 

because the truck drivers usually stop at a gas station for food and gas since these facilities 

are usually not available at a rest area. Finally, during the period 6 PM – 7 PM (hour 19) 

and 8 PM – 9 PM (hour 21), the utilization reduces which is also intuitive since truck drivers 
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like to drive during these periods and do not stop and park at the rest area unless 

encountered by an emergency like mechanical fault or accidents because they usually like 

to rest at late night periods mostly after 12 am as indicated by hour 1. 

Threshold parameters 
The threshold parameters include the threshold specific constants (αk values), as well as 

variables associated with off ramp and Number of lanes (=2) as part of 𝜸 vector. The 

thresholds are responsible for the ‘‘instantaneous’’ translation of the truck parking utilization 

propensity to whether or not the truck driver will park at any given time at any location (that 

is, they determine the mapping of the latent propensity to the observed count outcome). 

The threshold specific constants (αk) do not have any substantive interpretations. However, 

their presence provides flexibility in the count model to accommodate high or low probability 

masses for specific outcomes. The αk parameters are identified by specifying α0 = 0 and αk 

= αk ∀k ≥ K.  We, initially set K=4 and with multiple trials K is reduced based on statistical 

significance and general data fit. 

The elements in the 𝜸 vector are presented next in Table 18. For the other variables, a 

positive coefficient shifts all the thresholds toward the left of the truck parking utilization 

propensity scale, which has the effect of reducing the probability of zero trucks parked. The 

effect of off ramp suggests that, given two observations with same truck parking utilization 

propensity, the segment with off ramp violation is more likely to have a non-zero truck 

parking utilization occurrence compared to the other. This is an intuitive result since off ramp 

violation will likely mean truck parking area is full which may not be the case. The effect of 

number of lanes (=2) indicates an increase in non-zero truck parking utilization at rest areas 

adjacent to two lane roadway, for a given truck parking propensity. That is, the translation 

of probability into the occurrence of truck parking is elevated for 2 lane roadway adjacent 

rest areas, most likely because it is easy for truck drivers to enter a rest area adjacent to 

two lanes where as they may need to change multiple lanes, or maneuver in a different 

direction before entering a rest area which is difficult and risky. 

5.3.6 Model Selection and Statistical fit 
The Generalized Poisson count model with propensity and threshold is superior to the other 

models, as should be clear from the highest log-likelihood value and presence of several 

additional statistically significant coefficients in Table 18. However, all the models 

developed in this study were compared formally using the Bayesian Information Criterion 

(BIC) that penalizes models that attain better fit at the cost of additional parameters. 

According to the BIC criterion, a model with lower BIC value is preferred. It can be seen 

from the table that the Generalized Poisson model has the least BIC value of 115,427 

among all models suggesting superior data fit. This underscores the importance of using 
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GORP model structures that provide additional flexibility to standard count models for 

analyzing count outcomes (for instance, parking utilization in the current empirical context). 

Table 18 Model Results 

Variables 
Poisson 
(Model 1) 

Neg. Bin 
(Model 2) 

Poisson 
with γ 

(Model 3) 

Poisson 
with γ and 
α (Model 4) 

  
Coefficient 

(t-stat) 
Coefficient 

(t-stat) 
Coefficient 

(t-stat) 
Coefficient 

(t-stat) 

Constant 
-0.0684 -0.0769 0.0281 -0.296 

(-2.818) (-2.574) -1.539 (-2.997) 

Log(Volume) 
0.0185 0.0192 0.0081 0.0206 

-3.194 -2.458 -2.481 -2.763 

On Ramp 
-0.014 -0.0139 -0.0053 -0.0164 

(-1.494) (-1.193) (-1.091) (-1.468) 

Off Ramp 
-0.0093 

  
-0.1507 -0.1064 

(-1.000) (-6.597) (-2.108) 

Average Speed (<= 65mph)       
-0.1684 

(-1.762) 

Number of Lanes( = 2 ) 
0.0279 0.0316 1.9014 0.0942 

-2.258 -2.03 -48.956 (-1.436) 

12 am – 1 am (hour 1) 
0.0767 0.0724 0.0305 0.0597 

-3.421 -2.518 -2.541 -2.193 

1 am – 2 am (hour 2) 
-0.0793 -0.0797 -0.0357 -0.0875 

(-3.284) (-2.649) (-2.836) (-3.025) 

5 am – 6 am (hour 6) 
-0.0384 -0.0387 -0.0176 -0.0446 

(-1.621) (-1.301) (-1.415) (-1.565) 

12 pm – 1 pm (hour 13) 
-0.0589 -0.0591 -0.0267 -0.0595 

(-2.465) (-1.976) (-2.132) (-2.077) 

6 pm – 7 pm (hour 19) 
-0.0251 

  
-0.0132 -0.0358 

(-1.065) (-1.065) (-1.264) 

8 pm – 9 pm (hour 21) 
-0.0366 -0.0368 -0.0153 -0.0443 

(-1.546) (-1.238) (-1.233) (-1.558) 

Thursday 
0.0382 0.0349 0.0145 0.0347 

-2.878 -2.101 -2.093 -2.203 

Saturday 0.0151       
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-1.131 

Dispersion parameter   
1.6815 

    
-42.1429 

β Vector 

Off Ramp     
0.3357 0.0915 

-7.048 -1.94 

Number of 
Lanes  ( = 2 ) 

    
-3.0612 0.1218 

(-43.086) -1.977 

Threshold 
variables 

α1       
-0.6194 

(-58.338) 

α3       
1.3233 

-7.61 

Number of Observations 46368 46368 46368 46368 

Number of Parameters 
Estimated 

13 11 14 18 

Log-composite likelihood at 
convergence 

-1.41783 -1.38229 -1.36687 -1.2426 

Log-likelihood -65,741.94 -64,094.02 -63,379.03 -57,616.88 

BIC 131,624 128,306 126,908 115,427 

5.3.7 Elasticity Effects 
The elasticity computed is a measure of the aggregate percentage change in the response 

variable due to a change in an exogenous variable (36). By computing the elasticity effects 

of the exogenous variables, the magnitude of effects of these variables on the truck parking 

utilization can be determined. In this paper, we computed the percentage change in the 

expected number of trucks that park in a rest area because of a unit change in each 

exogenous variable. However, since standard elasticity calculations are not applicable to 

categorical variables, pseudo-elasticity effects were calculated for such variables. The 

pseudo-elasticity of an indicator variable essentially represents the average percent change 

in average truck parking utilization when the value of that particular variable is changed 

from 0 to 1 for all rest areas. 

For brevity, the elasticity effects are only presented for the best model, i.e., Poisson model 

with propensity and threshold parameters (model 4) (see Table 4). From the Table 19, it 

can be observed that the elasticity effects are consistent with the coefficient estimates. The 

first entry in the table indicates 100% increase in truck volume is likely to increase truck 

parking by 2.001% whereas presence of on ramp and off ramp violations decrease truck 

parking utilization by 1.545% and 0.85%, respectively. One additional lane to an existing 

two-lane roadway increases parking utilization in adjacent rest areas by 3.371%. Parking 
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areas that are adjacent to roadways with average truck speeds greater than 60 mph have 

14.484% lower utilization than parking areas adjacent to roadways with lower truck speeds. 

Similarly, parking areas have 5.792% more utilization during the hour past midnight 

compared to other non-peak rest hours Also, interestingly; parking utilization on Thursdays 

is 3.39% more than on other days of the week. Other numbers in the table can be interpreted 

similarly. 

Table 19 Elasticity Effects of the Generalized Poisson Model 

Variables 
Poisson with γ 
and α (Model 4) 

Volume (100% increase) 2.001 

On Ramp -1.545 

Off Ramp -0.85 

Average Speed (<= 65mph) -14.484 

Number of Lanes ( = 2 ) 3.371 

12 am – 1 am (hour 1) 5.792 

1 am – 2 am (hour 2) -8.041 

5 am – 6 am (hour 6) -4.165 

12 pm – 1 pm (hour 13) -5.525 

6 pm – 7 pm (hour 19) -3.354 

8 pm – 9 pm (hour 21) -4.137 

Thursday 3.339 

5.3.8 Model Validation 
In order to examine the prediction power of the models, a validation exercise was 

undertaken in which the predicted truck parking counts were compared with the observed 

count in the data. Then, Absolute Percentage Difference (APD) between predicted and 

observed counts was calculated. Lastly, Average Absolute Percentage Difference (AAPD) 

across all truck utilization levels was computed. A model with lower AAPD has better 

predictive ability than models with higher AAPD values. The results of the prediction 

analysis are presented in Table 20. It can be seen from the table that the Generalized 

Poisson model with propensity and threshold parameters (model 4) best has the best 

predictive performance with an AAPD value of 0.57%. The simple Poisson model that 

ignores dispersion has a very high AAPD value. Even NB model that accounts for dispersion 
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has higher AAPD value than the Generalized Poisson model. So, Poisson model with 

propensity and threshold parameters is better suited to capture dispersion in count data 

than NB model in the context of truck parking utilization. 

Table 20 Model Validations 

Truck 
Utilization 

Observed 
Count 

Expected Count 

Poisson 
(Model 1) 

Neg. Bin 
(Model 2) 

Poisson 
with γ 

(Model 3) 

Poisson 
with γ and α 

(Model 4) 

Count 
APD 
(%) 

Count 
APD 
(%) 

Count 
APD 
(%) 

Count 
APD 
(%) 

0 23185 17038 26.5 27124 17 21372 7.82 23307 0.53 

1 7666 16997 122 8644 12.8 12434 62.2 7641 0.33 

2 7659 8606 12.4 4336 43.4 7107 7.21 7555 1.36 

3 or more 7858 3727 52.6 6264 20.3 5455 30.6 7865 0.09 

AAPD (%)   53.3  23.4  22.8  0.57 
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6. WORKFORCE DEVELOPMENT ACTIVITIES 

A central issue that MPOs and DOTs face is a lack of stakeholder involvement, 

understanding, and interest in transportation projects and investments.  This poses a 

challenge for determining how well infrastructure and investments serve a community.  

Another issue faced by the transportation industry as a whole is the impending retirement 

of a large percentage of the workforce and the limited pipeline of workers electing to pursue 

transportation careers.  Efforts to educate the public on the importance of the transportation 

system and the need for increased numbers and diversity of people pursuing careers in 

transportation are crucial for impacting transportation system and workforce challenges.  

MAP-21 requirements and freight performance measures provide an excellent opportunity 

to convey transportation engineering and planning concepts to students and teachers.  

Thus, for this project, a series of modules was developed to introduce high school students 

to transportation concepts and to help them better understand the importance and impact 

of freight and the use of performance measures for assessing the transportation system.  

6.1 Curriculum 

The curriculum developed through this project was implemented with a group of 20 high 

school students (10 males, 10 female) as part of the 2016 Transportation Academy hosted 

at the University of Memphis July 11-15, 2016.  This program was a week long, full-day 

program designed to: 

 Expose students to transportation engineering and planning concepts  

 Familiarize them with the US transportation system and its impact on our 

communities and economy  

 Provide students with understanding of educational pathways in transportation 

 Introduce students to a variety of transportation career opportunities.   

 

The program included mini-lectures on a variety of transportation topics (including focus on 

freight) followed by brainstorming or problem solving activities, hands-on group challenge 

projects, industry field trips, classroom visits with industry professionals, and team research 

projects.  A freight story map8 was developed using ESRI ArcGIS software as part of this 

project, and provided students with an interactive exploration of the impact of freight on the 

economy and community in Memphis.  This session was followed by a mini-lecture and 

brainstorming activity on transportation system performance measures.  

                                                           
8https://uw-mad.maps.arcgis.com/apps/MapJournal/index.html?appid=510af627bbb448aa9aec9978e28ca2f3 

https://uw-mad.maps.arcgis.com/apps/MapJournal/index.html?appid=510af627bbb448aa9aec9978e28ca2f3
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6.2 Assessment 

Program entrance (administered on July 11, 2016) and exit surveys (administered on July 

15, 2016) assessed student’s interests and shifts in perceptions over the course of the 

week.  A parent survey was also emailed to all participants with the program acceptance 

packets in order to determine parents’ perceptions related to the program and goals for their 

children.  Parents were asked to complete and return the survey on the first day of the 

program.  Eighteen parents responded to the survey and indicated that the primary reasons 

they encouraged their children to attend the program were to help them learn about career 

opportunities in engineering and science related fields (94%), to keep students engaged in 

learning activities over the summer (67%) and to expose students to a university 

environment (56%).  Interestingly, only 4 parents (22%) reported that it was their child’s 

idea to attend the program.  Parents indicated that they would like their children to pursue 

an engineering or science career because of career variety (67%), rewarding career 

opportunities (61%), and because they believed their student would enjoy and has the 

potential to be successful in a career in engineering or science (55%).  Two parents 

indicated they might not support their child’s decision to pursue an engineering or science 

major because they do not know enough about these disciplines.   

Twenty students responded to the program introduction survey and eighteen responded to 

the exit survey.  When asked whether they were interested in majoring in 

computer/technology, engineering, science or math related majors, response percentages 

remained the same and generally high between the pre and post surveys, with the exception 

of computer/technology majors where 50% of students indicated interest prior to the 

program and 72% expressed interest at the end of the program.  Students were also asked 

to respond to a series of perception questions on both surveys.  Students indicated 

agreement with the following statements (% introduction survey/% exit survey): 

 There are good jobs available for people with degrees in STEM (100%/100%) 

 Transportation professionals make good money (88%/85%) 

 Girls can do just as well as boys in transportation and engineering jobs (75%/89%) 

 Being a science or engineering professional in transportation would be a fun job 

(35%/72%) 

 I believe I have the ability to work in a STEM field (75%/89%) 

The greatest shift in perceptions was seen related to ‘Being a science or engineering 

professional in transportation would be a fun job.’  Additional questions were included on 

the exit survey to further gauge perceptions of the transportation industry and students’ 

understanding of and interest in transportation career pathways.  On the exit survey, 

students expressed a belief that transportation professionals make a positive impact on 
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society (94%), transportation professionals do important work (94%), transportation 

professions are challenging (89%), the program helped them develop better problem-

solving skills (83%), and the program did a good job of showing how science, math, and 

engineering are used in transportation (89%).  Students also indicated the activities, field 

trips, and speakers helped them better understand the transportation industry (94%), how 

to pursue a transportation career (94%) and made them more interested in pursuing a 

transportation career (72%).  These results and shifts in perceptions are important, as 72% 

of students also reported that programs such as the Transportation Academy are influential 

factors in determining the college major they will pursue after graduating from high school.   

6.3 Dissemination 

A LiveBinders site9 hosts curriculum developed through University of Memphis summer 

outreach programs since 2011. This site is used for professional development with teachers 

throughout the West Tennessee region, and the activities are freely available for download 

and use in K-12 classrooms.  The materials developed for the 2016 Transportation 

Academy were added to the site, and will also be used in a series of professional 

development engagements for high school teachers in the spring of 2017. The curriculum 

developed through this project will be further disseminated through the West Tennessee 

STEM Hub, the Tennessee STEM Innovation Network, and the Southeast Transportation 

Workforce Center.  

  

                                                           
9http://www.livebinders.com/play/play?id=2011056 

http://www.livebinders.com/play/play?id=2011056
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7. CONCLUSION 

Moving Ahead for Progress in 21st Century (MAP-21) recognizes the importance of freight 

and advocates for a national and state strategic freight plans to assess the condition and 

performance of the national, state, local and regional freight networks. Adequate 

disaggregate data and appropriate methods of analysis are paramount to develop such 

performance measures. With the unavailability of accurate GPS data, or other data sets, 

literature is limited on developing freight performance measures (FPMs). However, 

identification and computation of FPMs is one of the imperative goals of MAP-21. MAP-21 

identifies a freight plan to address freight congestion bottlenecks, identify critical major 

intermodal centers to enhance connectivity, determine barriers to improved freight 

performance, and explore the critical sections of the transportation network that need 

prioritization in resource allocation to enhance FPMs. 

 

In this study, the researchers demonstrated how truck GPS data can be used to estimate 

FPMs for transportation networks and freight transportation facilities, evaluate performance 

of freight corridors, identify inter- and intra-truck trips, and analyze individual truck trip 

patterns. A number of algorithms were developed to process truck GPS data and develop 

freight performance indicators. Validation of the algorithms was based on link travel speeds 

available through the FPMweb Tool, Google maps and satellite images. The algorithms are 

combined to develop two tools. The first tool allows the user processing raw truck GPS data 

and extracting the data for certain time periods. The second tool enables the user to load 

the processed GPS data and calculate a wide range of performance measures within the 

ArcGIS environment.  

 

The study results showed that accuracy of developed algorithms can be improved if more 

GPS records are available and more frequent GPS signal is provided. Truck trip analysis 

also requires additional information (i.e., location of freight facilities, rest stops, pick-

up/drop-off business locations, commodity data, etc.).  One of the main obstacles of using 

the available GPS dataset was the large size which prohibited processing of long time 

periods at a time (e.g. month). The following practical recommendations can be provided to 

public agencies for processing these large size GPS datasets: 

1. Use more advanced CPU (i.e., recent processor, more RAM, multiple cores, etc.) 

2. Partition the data in smaller portions based on: 

 time of the day: AM, MD, PM, and OP  

 specific areas of the region under study 

 special characteristics (e.g., freight corridors, major metropolitan areas, etc.) 
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3. Parallel machine processing – use all available CPUs for processing the given 

dataset. For example, if there are four CPUs available, each one can be assigned 

for processing AM, MD, PM, and OP periods of a given day respectively. 

4. Gather more recent year truck GPS data, as the representative samples are higher.  

5. Use true shape network as opposed to a stick networks used for sketch planning. 

6. Adequate caution should be considered when the geographic boundaries consists 

of multiple time zones. 

 

The truck GPS data used in this project spanned for three states (TN, MS, and AL). FPMs 

were developed for all three states. The tools developed were tested to ensure that it works 

under various geographical scales and different network sizes. The proposed methodology 

and the developed GIS application can be efficient in supporting MAP-21 goals for planning 

agencies within their short and long range planning efforts by providing network 

performance measures. Outcomes of this research may be used in development, 

calibration, and validation of transportation planning and travel demand models as well as 

assistance in traffic operation and planning for operations. 
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APPENDIX- A. MISSISSIPPI CASE STUDY 

Data Overview for Mississippi 

Building off data supplied by the Department of Transportation, we used global positioning 

system (GPS) transponders to calculate truck traffic throughout the state of Mississippi.  

The data released to us included data from 2011, 2012, 2013, and 2014 for the months of 

March, June, and October.  The limitation on months was to reduce the overall data size 

and use these three months as a sample frame from the annual population of data.  We 

inferred the remaining months for totals. 

Our dataset consisted of 26.6 million data points in a comma-separated values (CSV) file.  

The CSV data contained latitude, longitude, segment, truck identification number, GPS read 

date, speed, heading, and State name.  The data of interest for the Mississippi analysis was 

the state name of Mississippi, the latitude, longitude, truck identification number, speed, 

and heading. 

Data Mining Tool 

Utilizing a custom tool designed for ArcGIS by the University of Memphis Intermodal Freight 

Transportation Institute called the Direction and Outlier Identification Algorithm (DOI) written 

in Python language.  The DOI looked at bi-directional Freight Performance Measures 

(FPMs) that addressed: 

 VOL - Truck volume 

 TS - Travel speed (miles per hour) 

 TT - Travel time (hours) 

 TTp90 - 90th percentile TT 

 TTp95 - 95th percentile TT 

 BTT - Buffer TT 

 BI - Buffer index 

 TTStD - TT standard deviation 

 TTCV - TT coefficient of variation 

 TTR - TT range 

 MMR - mean to median ratio 

 

The data were calculated using: 

1. Link/trip/path/tour travel time - TT (min, hrs.) 

2. Link/trip/path/tour travel speed - TS (km/hr., mi/hr.) 
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If more information is provided (i.e., location of freight facilities, purpose of stops, 

land use at stop location, location of pick up/delivery business locations, location of 

rest stops, etc.), additional trip/path/tour characteristics can be estimated: dwell time 

at freight facilities, stop purpose based on purpose of the preceding stop, traffic light 

stops (GPS signal of a high frequency is required  less than 3 min between 

consecutive observations), dwell time at rest stops, and others. 

 

TT reliability/variability measures 

1. 90th and 95th percentile travel time (𝑡𝑝90% and 𝑡𝑝95%) 

2. Buffer index 𝐵𝐼 =
𝑡𝑝95%−�̅�

�̅�
 

where �̅� =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  - mean travel time; 𝑥𝑖  - travel time for the observation i;              

𝑁 – number of observations 

3. Buffer travel time 𝐵𝑇𝑇 = 𝑡𝑝95% − �̅� (minutes, hours) 

4. Planning travel time 𝑃𝑇𝑇 = 𝑡𝑝95% (minutes, hours) 

5. Travel time standard deviation 𝜎 = √(∑ 𝑥𝑖
𝑁
𝑖=1 −�̅�)

2

𝑁−1
 

6. Travel time coefficient of variation 𝐶𝑉 =
𝜎

�̅�
 

7. Travel time range 𝑅𝑎𝑛𝑔𝑒 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

8. Ratio of mean travel time to median travel time 𝑟 =
�̅�

�̂�
  

where �̂� - median travel time If free flow travel time (or speed) is provided for 

links of the considered transportation network, additional FPMs can be 

computed: 

9. Planning travel time index 𝑃𝑇𝑇𝐼 =
𝑡𝑝95%

𝑥𝐹𝐹𝑆
 

where 𝑥𝐹𝐹𝑆 – free flow speed travel time 

10. Travel time index 𝑇𝑇𝐼 =
𝑥

𝑥𝐹𝐹𝑆
 

11. Total segment delay 𝑇𝑆𝐷 = (𝑡𝑝95% − 𝑥𝐹𝐹𝑆) × 𝑉 (vehicles-minutes) 

where 𝑉 – volume of vehicles at the segment 

12. Congested travel 𝐶𝑇 = ∑ 𝐶𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ × 𝑉 (vehicles-miles) 

where 𝐶𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ – congested segment length 

13. Congested roadway 𝐶𝑅 = ∑ 𝐶𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ (miles) 

 

These data were divided into hourly totals, daily totals, and monthly totals.  The individual 

truck identification numbers were interpolated to a median point by hour to eliminate multiple 

pings from the GPS trackers.  These individual truck speeds were averaged by hour.  
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Data Results 

Accounting for individual, non-interpolated truck volume in Mississippi for the years 2011-

2014 and in the months of March, June, and October showed that with 4.2 million in 2011, 

6.1 million in 2012, 7.3 million in 2013, and 9 million in 2014 (Table 21).  The weekly average 

for all years and months were 1.8 million on Sunday, 4 million on Monday, 4.7 million on 

Tuesday and Wednesday, 4.6 million on Thursday, 4.3 million on Friday, and 2.5 million on 

Saturday (Table 22).  The hourly averages from transponder GPS unique signals ranged 

from around 600,000 at 2 AM to 1.6 million at 3 PM (Figure 59).  The results by hour showed 

peak time from 7 AM to 4 PM (Figure 59).  We were able to calculate rolling trucks verses 

stopped (and idling).  Stopped trucks peaked at 1 AM and were lowest from 8 AM to 6 PM 

(Figure 60).  This number is reflected in the percentage of trucks rolling with the exception 

of the lowest percentage being 2 AM, explained by the reduction of rolling trucks at 2 AM 

(Figure 61).  The average rolling speed of trucks throughout the day hovered around 40 

mph with slightly higher speeds from 11 AM to 7 PM (Figure 62).  Total fuel consumed, 

based on an average of 6.5 mpg, throughout the day ranged from 101,000 gallons and hour 

to 253,000 gallons an hour (Figure 63).  These totals can be inferred over the entire study 

period with around 35% of modern trucks with GPS transponders and the study months 

being presumed to be persistent with the other months in the study, yielding a consumption 

of 10.6 million gallons of diesel from 2011-2014 in Mississippi alone, a daily average of 

1,218 gallons a day (Table 23). 

Data Analysis 

We can look at each hour of truck traffic to help identify where performance measures are 

not optimized.  As an example, we will use just trucks from 7 to 8 AM from 2011-2014.  By 

separating out the 1.35 million unique trucks by speed, we can see a picture of the state 

develop.  Starting with the stopped trucks, about 35% of trucks are stopped or about 

375,000 unique trucks (Figure 64).  The urban centers and major road network can be 

interpolated.  The next speed is rolling under 25 mph, or crawling, usually meaning shifting 

is constant and fuel consumption is greatly increased.  About 657,000 unique trucks, the 

largest number, can be seen in urban centers and along highways (Figure 65).  Trucks 

rolling between 25 and 45 are city and rural cruising speeds and have only about 87,000 

unique trucks concentrated around the timber region of the mid-south, urban centers, and 

highways (Figure 66).  The second highest number of trucks fall in the 45-70 mph category 

or cruising speed, which required less shifting and maximizing fuel efficiency.  This category 

shows the highway network very well and the urban centers are not as apparent, beyond 

multiple highways converging (Figure 67).  The last category are trucks exceeding 70 mph 

or speeding trucks that can go as fast as they deem they can without getting ticketed (Figure 

68).  This category shows only the highways and interstates that trucks are free to move 
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and the main thoroughfares are evident.  By combining all of these truck speeds, the fast 

moving trucks (red) and cruising trucks (dark green) reveal the truck network of Mississippi 

(Figure 69).  The remaining colors of light green and orange show urban centers and 

distribution areas. Comparing a road atlas, the non-interstate roads are revealed for 

overuse (Figure 69).  The non-Interstate heavy traffic is evident on Highways 25, 45 and 

ALT 45, 61, 72, 78, 82, 84, and 98.  Of note, Highway 25 has a significant truck slowdown 

near Louisville, Mississippi.  Running the FPMs for Jackson, Meridian, and Hattiesburg 

along the highway system, showed no major hotspots for consistent congestion. 

The port of Gulfport can also be evaluated by number of trucks rolling (Figure 70).  At the 

bottom of the Figure 70 is the port that extends into the Mississippi Sound with highway 90 

running along the coast line.  Here traffic has to move away from the port but beyond rail, 

has to travel through local streets with lights and stop signs.  Trucks take highway 49 north 

mainly, but also take 30th avenue north to 28th street west to Canal road then north.  Trucks 

also head up 49 to Pass Road east to Cowen/ Lorraine then north to the interstate.  Figure 

70 shows highway 49 in the middle heading north with the western branch south of the 

interstate being 28th and Canal and the eastern branch being Pass Road and Cowen/ 

Lorraine.  The evidence of three alternate paths by trucks to the interstate from the port of 

Gulfport shows a severe need for transportation improvement.  Further, the rate of speed 

the trucks are moving are below 45 and 25 during the transit.  Highway 90 also has evidence 

of heavy truck traffic that will typically need to head to I-10 as well, but through different 

routes.  Evidence of the truck flow in the area can be seen by the numerous stopped 

vehicles at the Flying J Truck Stop at the intersection of Canal and I-10 in Harrison County, 

where many trucks from the port are joined by through traffic on I-10 (Figure 71).  FPMs for 

Gulfport show that Highway 49 is a point of congestion between I-10 and the port. 

Meridian, Mississippi has a good location for intermodal with truck and rail converging with 

connections to Gulfport and Mobile, Alabama with its heaviest roads being I 20 and I 59 

followed by heavy traffic on Highway 45 with slower connections on Highways 19 and 39 

(Figure 72).  Hattiesburg also could see intermodal opportunities with connections to 

Gulfport and New Orleans with its heaviest roads being I 59 and Highways 49 and 98 

(heading east) with slower connections on Highways 11, 42, 98 (heading west), and 589 

(Figure 73). 

Conclusions and Recommendations 

The port of Gulfport needs better north-south corridor to allow for truck freight to be moved.  

Potential roads for upgrading would be Highways 25, 45 and ALT 45, 61, 72, 78, 82, 84, 

and 98.  Minimally, it would be recommended to reduce traffic impediments, lights, etc.  

Much of the traffic flow in the State of Mississippi is through traffic using Interstates and 
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highways to bisect the state.  The urban centers continue to show expected slowdown of 

traffic. 

Table 21 Unique Trucks by Year  

Truck Transponder Signals in March 
June October 

2011 4,185,400 

2012 6,138,500 

2013 7,239,500 

2014 9,006,900 

 
 

Table 22 Unique trucks by Day of the week  

Signals by Day of Week in March June October 

Sunday 1,760,000 

Monday 4,046,200 

Tuesday 4,660,400 

Wednesday 4,697,100 

Thursday 4,604,200 

Friday 4,258,000 

Saturday 2,544,400 
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Table 23 Costs and Consumption of Diesel  

 

Average Fuel Cost ($) 

at $2.43 

Total Gallons 

Consumed at 6.5 mpg 

Total Cost $12,975,268 4,571,228 

Annual Costs $4,325,089 1,523,743 

Monthly Costs $1,441,696 507,914 

Daily Costs $47,398 16,699 

4 Year Costs $17,300,357 6,094,971 

Total Inferred Costs $30,275,625 10,666,199 

Average Inferred Daily Cost $82,947 29,222 

Average inferred Hourly Cost $3,456.12 1,218 
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Figure 59 Unique trucks by hour with GPS transponders volume total over 2011-2014 
 

 

Figure 60 Volume of individual trucks with trucks registering zero mph shown as stopped 
trucks, which are idling 
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Figure 61 Percentage of trucks rolling to those stopped over the whole dataset by hour 

 

 

Figure 62 Average speed of trucks with and without stopped trucks 
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Figure 63 Diesel cost for the trucks in Mississippi by hour 
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Figure 64 Trucks stopped between 7 and 8 AM (357,000 trucks) 
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Figure 65 Trucks crawling from 0-25 mph (675,000 trucks) 
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Figure 66 Trucks rolling at 25-45 mph (87,000 trucks) 
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Figure 67 Trucks cruising at city and rural speeds from 45-70 mph (550,000 trucks) 
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Figure 68 All trucks travelling in excess of 70 mph (37,000 trucks) 
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Figure 69 All trucks by speed (1.35 million trucks) 
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Figure 70 Port of Gulfport (bottom center) and the intersection of I-10 and Highway 49 

 

 
Figure 71 Flying J truck stop at I-10 and Canal Road in Harrison County, Mississippi 
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Figure 72 Meridian, Mississippi and the road network surrounding it 

 

 
Figure 73 Hattiesburg, Mississippi and the road network surrounding it 
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APPENDIX- B. ALABAMA CASE STUDY 

Data Overview of Alabama 

The analysis performed in Alabama focused on the using the data to determine the daily 

average truck speeds in Alabama along roadway facilities.  As to the convention, TSa was 

used for trucks traveling north or east (as the mileposts counted up in these directions; and 

TSb was used for trucks traveling south and west.  The daily average speed is calculated 

based on the GPS data of October 2014, where the Monday to Friday consist of two different 

days and Saturday and Friday consist of three different days.  

The average speeds were calculated using the following convention:  

1. Join the LinkFPMs results on the Alabama initial network. 

2. There are so many zero values of link speed data attributes. 

3. Count the number of zero values than the attribute cell is excluded for the calculation 

4. 
𝑇𝑆𝑎1+𝑇𝑆𝑎2

2−𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑐𝑒𝑙𝑙
 or 

𝑇𝑆𝑎1+𝑇𝑆𝑎2+𝑇𝑆𝑎3

3−𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑐𝑒𝑙𝑙
 

 

Statewide Truck Speeds 

Figure 74-75 represent daily truck speeds for the roadways in Alabama based on the tool. 

One item of particular importance was the number of zero values.  For the TSa, there were 

191 zero values out of 2838 total links; and for the TSb, there were 193 zero values out of 

2838 total links.  Although it is important to note that there were only 3 links with zero values 

that were identified as interstate links. 

Conduct speed analysis of I-65  

To refine the analysis, Interstate 65 was selected as a roadway of interest.  This facility run 

the length of the state (north-south) and connects the Port of Mobile to locations within 

Alabama as well as cities within the Ohio Valley including Nashville, Louisville, Indianapolis 

and Chicago.  The analysis was performed for each day of the week using the tool and the 

Figure 76 thru Figure 89 show difference in truck speed for the different days. 
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Figure 74 Result of Travel Speed (TSa) of all Alabama Network on Wednesday 

 
Figure 75 Result of Travel Speed (TSb) of all Alabama Network on Wednesday 
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Figure 76 I-65 speed on Monday (TSa) Figure 77 I-65 speed on Monday (TSb) 

Figure 78 I-65 speed on Tuesday (TSa) Figure 79  I-65 speed on Tuesday (TSb) 
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Figure 80 I-65 speed on Wednesday (TSa) 

 
Figure 81 I-65 speed on Wednesday (TSb) 

 
Figure 82 I-65 speed on Thursday (TSa) 

 
Figure 83 I-65 speed on Thursday (TSb) 
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Figure 84 I-65 speed on Friday (TSa) 

 
Figure 85  I-65 speed on Friday (TSb) 

 
Figure 86 I-65 speed on Saturday (TSa) 

 
Figure 87 I-65 speed on Saturday (TSa) 
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Figure 88  I-65 speed on Sunday (TSa) 

 
Figure 89 I-65 speed on Sunday (TSb) 

 

As can be seen from the figures, the majority of truck speeds were in the 60 miles per hour 

or greater range, indicating that is limited congestion or slowing of the travel speed within 

the state and along the roadway.  In addition, it can be seen that the majority of congestion 

along Interstate 65 is located in the Birmingham Alabama area.  

 

Birmingham Area Speed Analysis 

To further examine the data, a focused view of Birmingham Alabama was performed to view 

changes in truck travel speeds for the community.  There were four days in October from 

four separate years selected. 

 Y 2011 results from data of 2011 Oct. 19 

 Y 2012 results from data of 2012 Oct. 17 

 Y 2013 results from data of 2013 Oct. 16 

 Y 2014 results from data of 2014 Oct. 15 

Below Figure 90 thru Figure 97 are showing the truck average travel speed for the 

Birmingham area.  
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Figure 90 2011 I-65 PM Peak hour Travel Speed at Birmingham Area (TSa) 

 

 
Figure 91 2011 I-65 PM Peak hour Travel Speed at Birmingham Area (TSb) 
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Figure 92 2012 I-65 PM Peak hour Travel Speed at Birmingham Area (TSa) 

 

 
Figure 93 2012 I-65 PM Peak hour Travel Speed at Birmingham Area (TSb) 
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Figure 94 2013 I-65 PM Peak hour Travel Speed at Birmingham Area (TSa) 

 

 
Figure 95 2013 I-65 PM Peak hour Travel Speed at Birmingham Area (TSb) 
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Figure 96 2014 I-65 PM Peak hour Travel Speed at Birmingham Area (TSa) 

 

 
Figure 97 2014 I-65 PM Peak hour Travel Speed at Birmingham Area (TSb)  
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