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Project Summary 

Traffic congestion on highways has been growing in urban areas where freight transportation hubs reside, 

affecting the efficiency and reliability of freight transportation.  This research investigated the effects of 

heavy vehicles (HVs) on dynamic traffic patterns that substantially affect highway performance.  

Particularly, the objective of this study is two-fold: (1) to characterize the car-following (CF) and lane-

change (LC) behavior involving HVs at the individual vehicle level, and (2) to quantify the effects of HVs 

in traffic streams in two typical types of highway bottleneck, rubbernecking and uphill segment.   

This study first calibrated three well-known CF models, Newell’s model, Gipps’ model, and Intelligent 

Driver Model (IDM), using real trajectory data to examine their effectiveness in describing the behavior 

of HVs.  It was found that the model performance, in terms of errors, varied with time resolution of data 

in calibration.  The performance of IDM deteriorates with time resolution, but Newell’s model improved 

as the time resolution increased.  The errors of Gipps’ model exhibited a convex relationship with the 

time resolution.  IDM performed the best when the time resolution was small but as the time resolution 

increased, Newell’s model eventually surpassed IDM.  Parameters in Newell’s model were found to be 

insensitive to the time resolution, but a large proportion of parameters in IDM and Gipps’ model were 

very sensitive to the resolution changes, which presents a challenge for calibration.  Therefore, a 

comprehensive evaluation of model’s advantage and limitations suggested that Newell’s model is 

advantageous because (1) the model structure is extremely simple while it produces reasonable 

performance, (2) the calibrated parameters are not sensitive to the time resolution used in calibration, (3) 

the model parameters have clear physical meaning and can be measured directly from empirical data, and 

(4) extended models based on Newell’s model had demonstrated the capability to capture the formation 

and development mechanisms of stop-and-go oscillations. 
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For further study, the asymmetric behavioral model (AB model), an extended Newell’s model, was 

modified to capture the CF behavior of HVs, because (1) the model parameters have clear physical 

meaning that could be measured directly from the empirical data, and (2) the model describes driving 

behavior at the individual vehicle level, which was critical to study the mechanisms of formation and 

development of stop-and-go oscillations and the impacts of oscillations on traffic flow, such as capacity-

drop (i.e., reduction in bottleneck discharge rate).  Specifically, an empirical analysis was conducted, in 

the framework of the AB model, to study the CF behavior of HVs and passenger cars (PCs) around HVs.  

Three CF combinations were examined, HV-following-PC (HV-PC), PC-following-HV (PC-HV), and 

PC-following-PC (PC-PC).  It was found that different vehicle combination of CF pairs had very different 

features when experiencing stop-and-go traffic.  The PC-HV case showed the largest time gap (𝜏𝜏) and 

PC-PC showed the smallest gap.  More importantly, HV-PC pairs exhibited a significant dampening 

effect by decreasing speed variations of stop-and-go disturbances.  This effect was associated with the 

convex or non-increasing reaction patterns of HVs in responding to stop-and-go waves, in which HVs 

either responded late or decelerated in a milder way.  On the other hand, HVs maintained much larger 

spatial gap, resulting in lower flow (in veh/h).  

This study also conducted an empirical analysis of LC behavior around HVs.  It was found that HVs had 

the discouraging effect; i.e., they discouraged other vehicles to insert behind them, presumably due to less 

desirable CF conditions (e.g., limited sight distance).  This effect favored traffic stability by reducing 

potential disturbance imposed by LCs, but could undermine roadway utilization by creating large gap 

behind HVs.  For both CF and LC behavior, there were behavioral aspects that could favor and undermine 

the traffic flow efficiency, and the interaction was complex.  A comprehensive evaluation of HVs 

integrating both CF and LC behavior is needed in future research.    

Based on the results of empirical studies, this study conducted simulations to study the impacts of the CF 

behavior of HVs in two typical types of highway bottleneck: rubbernecking and uphill segment.  In the 
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rubbernecking experiment, it was found that HVs reduced the formation and growth of traffic oscillations. 

This resulted in reduced overall capacity-drop: the normalized bottleneck discharge flow in PC/h 

increased with HV proportion.  In the uphill experiment, it was found that restrained acceleration due to 

roadway grade could cause a significant reduction in discharge flow and that the effect was much more 

profound for HVs than PCs.  It was also found that the effect of variable driver characteristics diminished 

with the grade and HV proportion.  Lastly, with given positive grade, the effects of HV proportion 

quickly diminished and became marginal, which was a puzzling result. It is suspected that it is a result of 

complex interactions among grade, vehicle mechanics, and variable driver characteristics.  Further studies 

are needed to elucidate these interactions.   

Further research is also needed to obtain a more complete understanding of HVs’ impact and develop 

control strategies based on the insight from this study.  Particularly, due to the data limitation, this 

research was unable to build a meaningful LC model.  A future study on LC modeling will facilitate 

integration of CF and LC models and a comprehensive evaluation of HV’s impact.   
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1 Introduction  

Efficient and reliable highway systems are critical for freight transportation to maintain economic 

competitiveness. Traffic congestion results in longer and more uncertain highway travel time, which is 

especially problematic for freight systems that need to maintain sufficient quality of service.  

Two phenomena of highway traffic are particularly important for freight transportation: bottleneck 

“capacity drop” and stop-and-go traffic (termed oscillations). These phenomena affect travel time and its 

reliability, and induce higher energy use and emissions due to frequent deceleration-acceleration 

(particularly in oscillations). The first phenomenon refers to a reduction in bottleneck discharge flow with 

onset of recurrent congestion (Banks, 1991; Cassidy and Bertini, 1999). This phenomenon is prevalent 

near busy merges and weaves, and is attributed to systematic lane changes (LC) in near-capacity states 

(Elefteriadou et al., 1995; Cassidy and Rudjanakanoknad, 2005). These LC create voids in traffic streams 

due to bounded vehicle accelerations (Laval and Daganzo, 2006), resulting in a 5-25% reduction in 

bottleneck discharge flow.  

The second phenomenon, stop-and-go oscillations, frequently emerges in congested traffic near 

bottlenecks (Ahn and Cassidy, 2007). They exhibit regularities in period (2-10 min) and propagation 

speed (10-15 mph) and grow significantly in amplitude as they propagate through congested traffic 

(Mauch and Cassidy, 2002; Ahn and Cassidy, 2007). The formation and growth of oscillations have been 

linked to instabilities in car-following (CF) (Zheng et al., 2011), LC (Ahn and Cassidy, 2007; Zheng et al., 

2011), and driver characteristics (Laval and Leclercq, 2010; Chen et al., 2012). Notably, driver reaction 

patterns to oscillations can further reduce the bottleneck discharge rate (Chen et al., 2014).  

Exiting literature on the behavior and impacts of heavy vehicles (HVs) is very limited.  There have been 

some efforts to characterize the behavioral difference in CF and impact in traffic streams.  The majority of 

the efforts, however, entailed modifying some parameters (such as space and headway) of existing CF 
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models originally developed for passenger cars (PCs) and examining the impact using simulation (e.g., 

literature in (Jo et al., 2003; Yang & Regan, 2008; Grenzeback et al., 1990; Peeta et al., 2005, Hoel & 

Peek, 1999)).  A few recent studies used empirical vehicle trajectory data for model calibration (e.g., 

Ossen & Hoogendoorn, 2011, Yang et al., 2013) or to extract statistic characteristics (e.g., headway) 

(Aghabayk et al., 2012).  These studies cited, however, applied the data in an aggregate way.  This is a 

significant drawback because the aggregation could not reveal the driver characteristics at the individual 

level, which were shown to be critical in the formation and development mechanisms of stop-and-go 

oscillations (Chen et al., 2012a, b, Chen et al., 2014).  

Literature on the LC behavior involving HVs is sparser.  Existing studies have mainly focused on the 

involvement of HVs in LC related crashes.  For example, an NHTSA report (Sen et al., 2002) examined 

the lane-changing crashes in 1999 in the US and found that large trucks were involved in 15% of the 

“typical lane changes”.  Particularly, large trucks were involved in 42% of the “merge” scenario crashes.   

Some studies on truck-lane restrictions implicitly examined this issue by comparing LC rates before and 

after the restrictions; however, the results were mixed (e.g., literature in (Hoel & Peek, 1999, Gan & Jo, 

2003; Jasek, 1997; Cate & Urbanik, 2004; EI-Tantawy, 2009)).  To our best knowledge, no empirical 

studies have examined the LC behavior involving HVs at the individual vehicle level.     

HVs can affect the above phenomena in a number of ways.  In congested traffic, HV tend to maintain 

larger headway and spacing for any given speed than PCs (Aghabayk et al., 2012), suggesting lower 

overall throughput in vehicles per hour.  More importantly, due to their physical dimension and weight, 

HVs have more limited acceleration and deceleration capabilities. Thus, HVs may react very differently 

to stop-and-go oscillations and significantly change the propagation characteristics.  Last but not the least, 

the compound impacts of HVs may vary significantly with the geometric features of roadways, such as 

flat road and uphill.  The mechanisms of the above traffic dynamics are currently not well understood and 

will be explored extensively in this proposed research.  Note that the current literature provides extensive 

knowledge of the mechanisms for PC, which will be used as a building block for this research.   
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Note that the purpose of this research is to better understand the dynamics of heterogeneous traffic and its 

impact on the highway traffic operations, which will lay the foundation for development of traffic control 

strategies to improve energy efficiency, environmental emission, and overall society mobility.  This is 

particularly important for the innovative application of emerging vehicle technologies, such as connected 

and automated vehicle technologies, to improve the traffic operation and promote smart and green truck 

freight.   

The remaining report is structured as follows. Chapter 2 describes the project scope and Chapter 3 

provides an introduction on the background of the study, particularly on the relevant literature.  Chapter 4 

presents the results of model calibration involving HVs against three typical car-following models.  

Chapter 5 and 6 respectively induce the empirical study of the CF and LC behavior of HVs.  Car-

following simulations using the model obtained from Chapter 5 are presented in Chapter 7, followed by 

conclusions and discussion in Chapter 8.  
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2 Project Scope  

The objective of this study is (1) to characterize the CF and LC behavior involving HVs at the individual 

vehicle level, and (2) to quantify the impacts of HVs in traffic streams in two typical types of highway 

bottleneck through simulations: rubbernecking and uphill segment.  Specifically, for (1) this project 

examined (i) the differences in CF behavior, particularly reaction patterns to oscillations, among three 

cases: HV-following-PC (HV-PC), PC-following-HV (PC-HV), and PC-following-PC (PC-PC), (ii) the 

differences in LC rates around HVs as opposed to PCs, and (iii) the unique impact of these differences in 

development of oscillations, based on empirical analysis of high resolution vehicle trajectory data.  With 

the CF model developed for HVs, this project conducted simulations to study (i) the effects of HVs’ CF 

behavior in oscillatory traffic, particularly on bottleneck discharge flow and oscillation period and 

amplitude; and (ii) how the effects change with respect to the grade.  The simulations provided insights 

into HVs’ role in dampening oscillations and the interaction among HVs’ vehicle characteristics, driving 

characteristics, and roadway grade conditions, which allowed further formulation and quantification of 

HVs’ impacts in traffic streams and enabled further control strategies.   

  



11 
 

3 Project Background  

3.1 Literature on HV Modeling  

HVs presumably exhibit or induce different CF and LC behavior than PCs due to their substantially 

heavier weight and larger physical dimensions, which can uniquely impact the traffic stream.  There have 

been some efforts to characterize the behavioral difference in CF and impact in traffic streams.  The 

majority of the efforts, however, entailed modifying some parameters (such as space and headway) of 

existing CF models originally developed for PCs and examining the impact using simulation (e.g., 

literature in (Jo et al., 2003; Yang & Regan, 2008; Grenzeback et al., 1990; Peeta et al., 2005, Hoel & 

Peek, 1999)).  More recently, several empirical studies examined CF behavior involving HVs using real 

vehicle trajectory data.  A brief introduction of the major studies is provided below.  

Ossen & Hoogendoorn (2011) used trajectories collected by helicopter to calibrate the car-following 

behavior of passenger car following passenger car and passenger car following trucks.  They calibrated 8 

car-following models to find the three best fitted models.  It was found that there was significant 

difference: the desired time headway of passenger car drivers was smaller when they were following 

trucks than when they were following passenger cars.   

Aghabayk et al. (2012) examined the characteristics (e.g., headway) of different CF combinations (car-

following-car, car-following-truck, and truck-following-car) by aggregating the trajectory sample of each 

CF type.   It was found that for space and time headways, truck-following truck pairs had the largest and 

car-following-car pairs had the smallest values.  In very low speed condition (speed below 30 km/h), car-

following-truck had larger space and time headway than truck-following-car pair but the relationship was 

reversed when speed was higher (i.e., speed larger than 30 km/h).  The authors claimed that when speed 

was under 30 km/h, as the followers, the cars desired to secure the sight distance behind the truck to 

maintain large headway.  By contrast, in high speed, the following trucks desired to keep large headway 
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out of the concern of limited braking capability.  Notably, these results were different from the results of 

Ossen & Hoogendoorn (2011), which found that the reaction time in car-following-truck and truck-

following-car pairs was the same.  

Yang et al. (2013) used NGSIM trajectory data to calibrate the Intelligent Driver Model (IDM) (Treiber et 

al., 2000) for different CF combinations.  They found that truck-following truck pairs had the largest jam 

space and car-following-car pairs showed the smallest jam space.  Regarding the safe time headway, the 

value was the largest in truck-following-truck pairs, followed by car-following-truck pairs and then truck-

following-car pairs, and it was the smallest in the car-following-car pairs.  Notably, these results were 

mostly consistent with the results of of Aghabayk et al. (2012).  Yang et al. (2013) also found that cars 

and HVs can both stabilize and destabilize traffic flow depending on the CF combination types and 

equilibrium velocity.   

It is worth noting that the results on the CF model calibration for HVs were inconsistent in the studies 

introduced above.  Additionally, these studies studied the HV characteristics in an aggregate way.  This 

method, however, could cause significant problems because the studies of Chen et al. (2012a), Chen et al. 

(2012b) and Chen et al. (2014) revealed that the individual driver characteristic is critical to describing 

stop-and-go oscillation formation and development and to capturing the impacts on traffic flow such as 

capacity-drop.   

The literature on the LC behavior involving HVs is even sparser.  Existing studies have mainly focused 

on the involvement of HVs in LC related crashes.  For example, an NHTSA report (Sen et al., 2002) 

examined the lane-changing crashes in 1999 in the US and found that large trucks were involved in 15% 

of the “typical lane changes”.  Particularly, large trucks were involved in 42% of the “merge” scenario 

crashes.   Some studies on truck-lane restrictions implicitly examined the impacts of HVs by comparing 

LC rates before and after the restrictions; however, the results were mixed (e.g., literature in (Hoel & 

Peek, 1999, Gan & Jo, 2003; Jasek, 1997; Cate & Urbanik, 2004; EI-Tantawy, 2009)).  To our best 
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knowledge, no empirical studies have examined the LC behavior involving HVs at the individual vehicle 

level.     

The results of literature review suggest that though HVs play an important role in the traffic stream, our 

understandings on the HV behavior (including CF and HV behavior) are still in the infancy.  This 

impedes the application of emerging new technologies, such as connected and automated vehicles 

technologies, for further improvement.  Therefore, this study aims to have better understandings of both 

the CF and HV behavior of HVs at the individual vehicle level, and to enable further modeling as well as 

control.     

3.2  Existing CF models for PCs   

The literature for CF behavior of PCs is very extensive.  Therefore, some CF models for PCs had been 

adopted and modified to represent HV’s CF behavior by previous research, such as Ossen & 

Hoogendoorn (2011) and Yang et al (2013).  Particularly, we found that in the literature three typical 

models were commonly used, which show the best performance in terms of data fitting and physical 

interpretation of calibration, Newell’s model (Newell, 2002), Gipps’ model (Gipps, 1981), and intelligent 

driver model (IDM) (Treiber et al., 2000).   

3.2.1.1 Newell’s Model 

Newell’s model (Newell, 2002) is one of the simplest car-following models. It assumes that a follower’s 

trajectory is a transplantation of the leader’s by a time and space shift (𝜏𝜏, 𝑑𝑑) where 𝑑𝑑 represents the 

minimum spacing and 𝜏𝜏 represents the response time; see Figure 3-1.  The two variables (𝜏𝜏, 𝑑𝑑)  remain 

constant for a given CF vehicle regardless of speed but vary across different vehicles.  In many studies, 

the ratio of 𝑑𝑑 and 𝜏𝜏, which yields the wave speed (𝑤𝑤 = 𝑑𝑑/𝜏𝜏), is assumed constant across vehicles.   
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Figure 3-1: Trajectories of a vehicle pair for Newell model 

Newell’s model describes vehicle’s position in congestion as follows: 

𝑋𝑋𝑛𝑛(𝑡𝑡 + 𝜏𝜏) = 𝑋𝑋𝑛𝑛−1(𝑡𝑡) − 𝑑𝑑,                                                            (1) 

where 𝑋𝑋𝑛𝑛 represents the position of vehicle n.  In free-flow condition, vehicles travel at constant desired 

speed 𝑢𝑢.   

Notice that Newell’s model describes the microscopic behavior of an individual vehicle.  When 

aggregated to the macroscopic level, the model is consistent with the Kinematic Wave model (Lighthill 

and Whitham, 1955; Richards, 1956) with a triangular shape fundamental diagram (as illustrated in Figure 

3-2).  Specifically, based on flow conservation, the Kinematic wave model describes the relationship 

between flow (𝑞𝑞) and density (𝑘𝑘) in the following form:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕(𝜕𝜕)
𝜕𝜕𝜕𝜕

= 0. 

When a triangular shape function is assigned to the flow function 𝑞𝑞(𝑘𝑘), the model becomes consistent 

with Newell’s model. 
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Figure 3-2: Kinematic Wave model with a triangular shape fundamental diagram 

Although Newell’s model has an extremely simple structure, many empirical studies suggest that the 

model effectively captures key traffic characteristics and provides reasonable approximations for traffic 

evolution.  For example, Ahn et al. (2004) verified Newell’s model by examining the trajectories of 

vehicles discharging from a long queue of a signalized intersection.  They found that the time-space 

trajectory of a vehicle followed the vehicle in front after a time and space shift (𝜏𝜏, 𝑑𝑑), and there was no 

statistically significant difference in the (𝜏𝜏, 𝑑𝑑) across the observed vehicles.   

3.2.1.2 Gipps’ Model 

Gipps’ model (Gipps, 1981) adopted the safety distance logic: the speed for a given condition is derived 

to assure that a vehicle can safety stop in case that the proceeding vehicle suddenly decelerates.  The 

model consists of two components: one for the free flow regime and one for the congested regime (i.e., 

car-following regime).  In the former case, the speed of vehicle n is determined as: 

𝑣𝑣𝑎𝑎,𝑛𝑛(𝑡𝑡 + 𝜏𝜏) = 𝑣𝑣𝑛𝑛(𝑡𝑡) + 2.5 ∙ 𝑎𝑎𝑛𝑛𝑚𝑚𝑎𝑎𝜕𝜕 ∙ 𝜏𝜏 ∙ �1 − 𝑣𝑣𝑛𝑛(𝜕𝜕)
𝑉𝑉𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚� ∙ �0.025 + 𝑣𝑣𝑛𝑛(𝜕𝜕)

𝑉𝑉𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚.                   (2) 

While in the car-following regime, vehicle speed is described as: 
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𝑣𝑣𝑏𝑏,𝑛𝑛(𝑡𝑡 + 𝜏𝜏) = −𝑏𝑏𝑛𝑛 ∙ �
𝜏𝜏
2

+ 𝜃𝜃� 

+�𝑏𝑏𝑛𝑛2 ∙ �
𝜏𝜏
2

+ 𝜃𝜃�
2

+ 𝑏𝑏𝑛𝑛 ∙ �2 ∙ (𝑥𝑥𝑛𝑛−1(𝑡𝑡) − 𝑥𝑥𝑛𝑛(𝑡𝑡) − 𝑆𝑆𝑛𝑛−1) − 𝜏𝜏 ∙ 𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑣𝑣𝑛𝑛−1(𝜕𝜕)2

𝑏𝑏𝑛𝑛−1^ �.                                       (3) 

The definitions and typical values of the variables in the model were provided in Table 2-1.   

Gipps’ model has been widely used in many simulation models, including the commonly used simulation 

software AIMSUN developed by TSS (Barcelo and Casas, 2005). 

Table 2-1 Definition and typical values for parameters in Gipps’ model 

Notation Meaning Typical value 
(cars for urban area ) 

𝑎𝑎𝑚𝑚𝑎𝑎𝜕𝜕 Maximum acceleration 2 m/s2 
𝜏𝜏 Apparent reaction time 1.0 sec 

𝑉𝑉𝑚𝑚𝑎𝑎𝜕𝜕 Maximum desired speed 30 m/s 
𝑏𝑏 Most severe braking 2 m/s2 
𝜃𝜃 Additional comfort time lag (=𝜏𝜏/2) 0.5 sec 

𝑆𝑆 Effective vehicle size 
(= vehicle length + safety gap) - 

Safety gap Gap that a following vehicle will not intrude even 
when vehicles stop. 2 m 

𝑏𝑏^ Estimate of maximum deceleration 2 m/s2 
 

3.2.1.3 Intelligent Driver Model (IDM) 

IDM is also among the most widely used models (e.g., it was used in Ossen & Hoogendoorn, 2011; Yang 

et al., 2013; and Talebpour & Mahmassani, 2015).  The model takes the desired speed and desired space 

headway into consideration and uses a single equation to capture the traffic dynamic regardless of the 

traffic state (i.e., congestion or free-flow).   It defines the acceleration function as follows: 

𝑑𝑑2𝜕𝜕𝑛𝑛(𝜕𝜕)
𝑑𝑑𝜕𝜕2

= 𝑎𝑎 ∙ �1 − �𝑣𝑣𝑛𝑛(𝜕𝜕)
𝑉𝑉
�
𝛿𝛿
− �𝑆𝑆(𝑣𝑣𝑛𝑛(𝜕𝜕),∆𝑣𝑣𝑛𝑛(𝜕𝜕))

∆𝜕𝜕𝑛𝑛(𝜕𝜕)−𝑙𝑙
�
2
�,                                        (4) 
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𝑆𝑆�𝑣𝑣𝑛𝑛(𝑡𝑡),∆𝑣𝑣𝑛𝑛(𝑡𝑡)� = 𝑠𝑠0 + 𝑠𝑠1 ∙ �𝑣𝑣𝑛𝑛(𝜕𝜕)
𝑉𝑉

+ 𝜏𝜏 ∙ 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝜕𝜕)∙∆𝑣𝑣𝑛𝑛(𝜕𝜕)
2∙√𝑎𝑎𝑏𝑏

,                                (5) 

where ∆𝑣𝑣𝑛𝑛(𝑡𝑡) = 𝑣𝑣𝑛𝑛−1(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡), representing the difference of speed between a following vehicle and 

leading vehicle. The description of other variables and typical values are summarized in Table 2-2.  

Notice that this model would produce smooth transition from free-flow state to congestion state.  The 

model also constrains the acceleration (deceleration) within the maximum acceleration (desired 

deceleration) to avoid unrealistic values.  This leads to more realistic driving mechanics for the drivers.  

However, the model uses “desire measurements” (such as desired deceleration and desired velocity), 

which are difficult to observe and calibrate in measurable data in real traffic (Saifuzzaman and Zheng, 

2014).    

Table 2-2 Definitions and typical values for IDM parameters 

Notation Meaning Typical value 
(cars) 

𝑎𝑎 Desired maximum acceleration 0.73 m/s2 
𝜏𝜏 Safe time headway 1.6 sec 
𝑉𝑉 Desired velocity 120 km/h 
𝑏𝑏 Desired deceleration 1.67 m/s2 
𝛿𝛿 Acceleration exponent 4 
𝑠𝑠0 Jam distance 2 m 
𝑠𝑠1 Jam distance 0 m 

 

 

3.2.1.4 Summary 

The three CF models introduced above were studied and evaluated by Punzo & Simonelli (2005) for the 

CF behavior of PCs.  Four models (the fourth one is a stimulus-response model named MITSIM (Ahmed, 

1999; Yang and Koutsopoulos, 1996)) were calibrated and validated using trajectories of a four-vehicle 

platoon traveling on two different types of roadway, urban and extra-urban roads.   It was found that in 

model calibration, Newell’s model, Gipps’ model, and IDM model had similar performance measured by 
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the root mean square percentage error (RMSPe) of inter-vehicle spacing.  The results were consistent with 

the calibration using test track data in Brockfeld et al. (2004).  More importantly, Newell’s model, which 

had the simplest model structure, had the best performance in the model validation.  Particularly, in the 

validation process, the calibrated parameters from one dataset (corresponding to one road way type and 

therefore one type of traffic condition) were used to predict the trajectories in another dataset 

(corresponding to another road way type and therefore another type of traffic condition).  Newell’s model 

had the smallest RMSPe on average, while more sophisticated models (such as IDM) had smaller 

variation in their results.  This result was attributed to the simplicity of Newell’s model prevented the 

overfitting issues, which existed in other models with more complex structure.  Additionally, it was found 

that Gipps’ model had bad performance in the validation, suggesting that the model was too sensitive to 

traffic conditions.    

As revealed by previous studies that assessed the performance of the CF models, the three models, 

Newell’s model, Gipps’ model, and IDM, have their own advantages and disadvantages.  Therefore, we 

believe that it is necessary to conduct model calibration for HVs, and the results are presented in the next 

chapter.  

4 Calibration of Selected CF Models 

In this section, we conduct model calibration for HVs against the three commonly used models in the 

literature: Newell’s model, Gipps’ model, and IDM.      

4.1 Data  

For the whole study, the NGSIM trajectory data from I 80 (NGSIM, 2006) were used.  Figure 4-1(a) 

provides the map and sketch of the site.  Vehicle trajectories were collected for 45 minutes in total over a 

roadway sketch of 1650ft with the resolution of 0.1 s.  Traffic on this segment was heavily congested 
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during the study period with frequent stop-and-go waves.  The vehicle speed mostly varied from 0-35 ft/s; 

see Figure 4-1(b) for the vehicle trajectories in the first 15 minutes of the data on lane 3.  The trajectories 

in the figure are colored according to the speed scale shown on the right.  

This study focused on three types of CF combinations: HV-PC, PC-HV, and PC-PC.  The case of heavy 

vehicle following heavy vehicle (HV-HV) was excluded due to the small sample size.  The case of PC-PC 

was analyzed to generate benchmark against the behavior of the other two cases.  We defined HV as a 

vehicle (excluding buses) with length greater than 50 ft and PC as a vehicle with length smaller than 16 ft 

(but excluding motorcycles).  For CF calibration, the dataset was further filtered to assure that the 

trajectory pairs were free of lane-changing impact and displayed deceleration-acceleration dynamics with 

speed variation greater than 10 ft/s.  A total of 19, 19, and 30 CF pairs were identified for PC-HV, HV-PC, 

and PC-PC types, respectively.   

(a) 
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 (b)

 

Figure 4-1: (a) Map and sketch of I 80 (Source: Google map, accessed Sep 8th, 2015); (b) Trajectory plot 
of I 80 lane 3 (Red trajectories are HVs). 

4.2 Calibration Process 

4.2.1 Genetic Algorithm  

Genetic algorithm (GA) is one of the most popular optimization algorithms used for calibrating model 

parameters. It uses the similar method of natural selection and natural genetic (Goldberg, 1989). The 

major procedure of GA consists of initial generation and repeated crossover-mutation-evaluation for next 

generation as illustrated in Figure 4-2.  Particularly, in the initial step, as the 1st generation, the algorithm 

generates a given number (usually a default value of 10,000) of parameter sets (each set consists of all the 

parameters to optimize, and the value for each parameter is randomly selected from its reasonable range).  

The performance of a parameter set is assessed by an objective function (described in the following 

subsection) that represents the error in the measurement of effectiveness (e.g., inter-vehicle spacing) 
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between the predicted value from the model and the real value, denoted by the score.  Thereafter, the 

performance is used to rank the parameter sets.   

 

Figure 4-2: Process of Genetic algorithm 

From the result of the 1st generation, a certain number of parameter sets (we use 4000 sets) are selected 

for crossover and mutation to further derive the optimal parameter values.  In selecting parameter sets, 

those that are well-ranked (i.e., with higher scores) have higher probabilities (we used the default 

probability assignment function in Matlab’s GA algorithm).   With the selected parameter sets, the 

crossover process is applied.  The underlying mechanism is to take two mutually exclusive parts of the 

parameter values from two different well-performed parameter sets to construct a new set of parameter 

values.  This process is illustrated in Figure 4-3.  In general, the performance of the new value set will be 

closer to the optimum.  Following the crossover, mutation is used to assure that the optimum selected for 

that generation is global optimum; shown in Figure 4-4.  Specifically, for a given parameter set, one 

parameter value is replaced with a random value, which generates a new parameter set.  All the new 

parameter sets resulting from crossover and mutation will be used in the next generation for evaluation.  

The process of crossover-mutation-evaluation for next generation is repeated until the optimal values for 

the parameter set converge.    
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Figure 4-3: Crossover of GA for an example of 8 parameters 

 

Figure 4-4: Mutation of GA (O and X denote possible outcomes of a variable) 

 

To run GA, Matlab and global optimization toolbox were used.  Note that the upper bound (UB) and 

lower bound (LB) for each parameter are specified as inputs to account for possible constraints.  For this, 

we consider the physical capability of vehicles and typical values that accord well with real traffic.  For 

example, in Newell’s model the range of 𝜏𝜏 was decided by considering the distribution of driver reaction 

time.  Reaction time less than 0.5 sec is highly unlikely for normal drivers (except for professional race 

drivers), and if reaction time is greater than the maximum value, it is likely that the driver is not in car-

following mode. The minimum spacing, 𝑑𝑑, in Newell’s model was set by considering vehicle length, 

which should be greater than the average length of paired vehicles.  The UB and LB for parameters in 

Gipps’ model and the IDM model were set in a similar way.  Specifically, the range of desired velocity V 

(called maximum desired speed in Gipps’s model) was set by considering the characteristics of cars and 

trucks and the speed limit of the study segment.  Table 4-1 shows the range of parameters for the three 

models considered.  Note that for Gipps’ model, only the second equation for the car-following regime 

was used for the calibration because the traffic condition on I 80 was congested.   
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Table 4-1: (a) Parameter range of Newell’s model; (b) Parameter range of Gipps’ model;  
(c) Parameter range of IDM 

              (a) 

Newell’s model 
Parameter LB UB 
𝜏𝜏 (sec) 0.5 10 

𝑑𝑑 (ft) PC-PC 20 100 
PC-HV/HV-PC 40 100 

 

 (b) 

Gipps’ model 
Parameter LB UB 
𝜏𝜏 (sec) 0.5 10 
𝑏𝑏 (ft/s2) 0.1 27 

Safety gap (ft) 1 33 
𝑏𝑏^ (ft/s2) 0.1 27 

 

 (c) 

IDM 
Parameter LB UB 
𝑎𝑎 (ft/s2) 0.1 8 
𝜏𝜏 (sec) 0.5 10 
𝑉𝑉 (ft/s) 40 140 
𝑏𝑏 (ft/s2) 0.1 15 
𝑠𝑠0 (ft) 0 10 
𝑠𝑠1 (ft) 0 5 

 

 

4.2.2 Objective Function 

As mentioned in the previous section, to evaluate the performance of a given parameter set, an objective 

function is used.  Here we use an objective function that aims to minimize the error between real values 

and estimated values from a model.  Particularly, Theil’s inequality coefficient U is adopted because it is 

known to produce stable and reasonable results (Yang et al., 2013). 
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𝑈𝑈𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝜕𝜕𝑜𝑜𝑣𝑣𝑜𝑜 =
�1
𝐾𝐾∑ �𝑦𝑦𝑘𝑘

𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟−𝑦𝑦𝑘𝑘
𝑐𝑐𝑚𝑚𝑟𝑟�

2𝐾𝐾
𝑘𝑘=1

�1
𝐾𝐾∑ �𝑦𝑦𝑘𝑘

𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟�
2𝐾𝐾

𝑘𝑘=1 +�1
𝐾𝐾∑ �𝑦𝑦𝑘𝑘

𝑐𝑐𝑚𝑚𝑟𝑟�
2𝐾𝐾

𝑘𝑘=1

,                                              (6) 

where 𝑦𝑦𝜕𝜕𝑟𝑟𝑜𝑜𝑎𝑎𝑙𝑙  is the real data, 𝑦𝑦𝜕𝜕𝑜𝑜𝑎𝑎𝑙𝑙 is the calculated value from the model, and 𝐾𝐾 is the size of the sample.  

It is worth noting that the optimal parameters obtained from different runs of the GA algorithm could be 

slightly different because the parameter sets generated in the initial step are random.  Fortunately, it is 

found that the optimal parameters usually converge after three runs.  Therefore, for each model, GA was 

repeated 3 times and we chose the parameter set that led to the smallest U value.  

4.2.3 Parameter Fitting  

In parameter fitting, we first define the measurement of effectiveness.  Specifically, we use the absolute 

Root Mean Square Error (RMSE) (defined below) and the relative error (defined as the ratio of RMSE 

and the average of parameter value).   

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
𝐾𝐾
∑ �𝑦𝑦𝜕𝜕𝑟𝑟𝑜𝑜𝑎𝑎𝑙𝑙 − 𝑦𝑦𝜕𝜕𝑜𝑜𝑎𝑎𝑙𝑙�

2𝐾𝐾
𝜕𝜕=1 .                                               (7) 

Table 4-2 shows the results of parameter fitting for the three models with the time stamp of 0.1 s.  As 

indicated by the table, in Newell’s model the PC-PC case has the shortest reaction time, followed by the 

PC-HV case and then HV-PC case.  Additionally, PC-PC has the smallest 𝑑𝑑 and PC-HV has the largest 𝑑𝑑. 

In IDM, the safe time headways for PC-PC and PC-HV are similar but the value is much larger for HV-

PC.  Additionally, the maximum acceleration (𝑎𝑎) for PC-PC is the largest while the values for PC-HV and 

HV-PC are relatively close.  For Gipps’ model, the reaction times for PC-PC and PC-HV are close but the 

value is much large for the HV-PC case.  Notice that the three models do not share the same definitions 

for the parameters.  Therefore, it is difficult to evaluate model performance based on the values of each 

parameter.  Instead, we use speed as an indicator to assess model performance.  Notice that the three 
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models define the car-following relationship in different forms (e.g., Newell’s model describes position; 

Gipps’ model defines speed; and IDM defines acceleration).  Thus, the speed is calculated from the 

derivative of position in the Newell’s model and from the integral of acceleration from IDM.  One can see 

that in the relative error scale, IDM performed best with only 2% relative error in speed for all three pair 

combinations, and the performance of Newell’s and Gipps’ models was reasonably close (about 15-20%).  

Also note that the performance of Newell’s model and Gipps’ model was very similar to the result in 

Punzo and Simonelli (2005).   

It is worth noting that the model performance varies with the resolution of the time stamp.  We examined 

the model performance under different resolutions (0.1s, 0.5s, 1s, 2s, and 5s).  The results are provided in 

Table 4-3, Table 4-4, and Table 4-5, and plots of model errors are provided in Figure 4-5.  Clearly, the 

relative error in Newell’s model decreases with the time resolution and becomes relatively stable after 

time resolution of 1s.  By contrast, the relative error of IDM increases with the time resolution, which 

exhibits a near linear relationship.  For Gipps’ model, the relationship seems convex.  Notably, with the 

time resolution of 2s, the relative errors of the three models become comparable (around 7-11%), and the 

performance of Newell’s model eventually suppresses IDM as the time resolution continues to increase.  

Additionally, the model parameters show different sensitivity levels to the time resolution.  Particularly, 

the parameter values in Newell’s model seem insensitive to the time resolution increases.  For example, 

the reaction time 𝜏𝜏 for HV-PC changes from 1.86s to 1.7s as the time resolution goes from 0.1s to 2s, with 

a relative scale of 8.6%.  However, for IDM, a large proportion of the parameters are sensitive to the time 

resolution, such as maximum acceleration rate 𝑎𝑎, desired speed 𝑉𝑉, and desired deceleration rate 𝑏𝑏.  For 

example, the desired deceleration rate 𝑏𝑏 for PC-PC reduces by 31% as the time resolution goes from 0.1s 

to 2s.  The parameters in Gipps’ model are also very sensitive to the time resolution, particularly reaction 

time 𝜏𝜏, most severe braking 𝑏𝑏𝑛𝑛, and maximum deceleration 𝑏𝑏𝑛𝑛−1^ .  Notably, the parameters in CF models 

are supposed to be independent of the time resolution as they should only reflect features of vehicles’ 

driving behavior. The sensitivity to the time resolution makes the calibration process difficult because one 
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has to select the “correct” resolution to obtain reasonable results.  Therefore, Newell’s model turns out to 

be advantageous with the “time resolution-independent” feature.  

In model evaluation, the physical meaning of the model parameters is another important aspect.  From 

this perspective, IDM has some limitations, though it has the minimum error level.  Particularly, some 

key parameters in the model do not have clear physical meaning, and they are very difficult to calibrate 

using empirical data, such as the safe time gap (τ), which is different from reaction time, and the 

acceleration exponent (δ).  Additionally, since the calibrated values vary with time resolution, the lack of 

connection to physical meaning makes it difficult to decide whether the calibrated value is reasonable or 

not. 
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Table 4-2: Calibrated parameters (time stamp=0.1 s): (a) Newell’s model; (b) Gipps’ model; (c) IDM 

(a) 

Case 
𝜏𝜏 

(sec) 
𝑑𝑑  

(ft) 
Wave speed 

(ft/s) 
Average speed 

(ft/s) 
RMSE  
(ft/s) 

Relative 
Error 

PC-PC 1.22 25.38 20.87 16.55 2.75 18% 
PC-HV 1.67 68.44 40.91 14.05 2.40 19% 
HV-PC 1.86 46.15 24.83 16.33 3.45 23% 

 

(b) 

Case 𝜏𝜏  
(sec) 

Safety 
gap (ft) 

𝑏𝑏𝑛𝑛  
(ft/𝑠𝑠2) 

𝑏𝑏𝑛𝑛−1^  
(ft/𝑠𝑠2) 

Average 
speed (ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 1.45 4.34 3.64 3.50 16.55 2.31 15% 
PC-HV 1.38 9.38 1.18 1.36 14.05 2.21 17% 
HV-PC 1.89 5.66 2.10 3.27 16.33 2.75 18% 

 

(c) 

Case 𝜏𝜏 
(sec) 

𝑎𝑎 
(ft/𝑠𝑠2) 

𝑉𝑉 
(ft/𝑠𝑠) 

𝑏𝑏  
(ft/𝑠𝑠2) 𝑠𝑠0 (ft) 𝑠𝑠1 (ft) 

Average 
speed
(ft/s) 

RMSE
(ft/s) 

Relative 
Error 

PC-PC 1.00 1.45 95.60 11.97 6.80 2.33 16.55 0.34 2% 
PC-HV 1.10 0.50 86.25 11.36 5.15 1.17 14.05 0.25 2% 
HV-PC 2.37 0.74 74.41 8.74 6.22 1.98 16.33 0.29 2% 
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Table 4-3: Calibrated parameters for Newell’s model: (a) Time step = 0.1 s; (b) Time step = 0.5 s; (c) 
Time step = 1 s; (d) Time step = 2 s; (e) Time step = 5 s. 

(a) 

Case 𝜏𝜏  
(sec) 

𝑑𝑑  
(ft) 

Wave speed 
(ft/s) 

Average speed 
(ft/s) 

RMSE  
(ft/s) 

Relative 
Error 

PC-PC 1.22 25.38 20.87 16.55 2.75 18% 
PC-HV 1.67 68.44 40.91 14.05 2.40 19% 
HV-PC 1.86 46.15 24.83 16.33 3.45 23% 

 

(b) 

Case 𝜏𝜏  
(sec) 

𝑑𝑑  
(ft) 

Wave speed 
(ft/s) 

Average speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 1.30 25.55 19.62 16.35 1.65 11% 
PC-HV 1.72 68.85 40.11 14.09 1.58 12% 
HV-PC 1.94 46.82 24.16 16.27 2.54 17% 

 

(c) 

Case 𝜏𝜏  
(sec) 

𝑑𝑑  
(ft) 

Wave speed 
(ft/s) 

Average speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 1.09 26.62 24.48 16.47 1.27 8% 
PC-HV 1.97 64.85 32.84 14.15 1.27 10% 
HV-PC 1.87 45.65 24.47 16.39 2.02 13% 

 

(d) 

Case 𝜏𝜏  
(sec) 

𝑑𝑑  
(ft) 

Wave speed 
(ft/s) 

Average speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 1.05 36.95 35.26 16.81 1.21 8% 
PC-HV 1.97 67.74 34.39 14.28 1.05 8% 
HV-PC 1.70 51.86 30.42 16.66 1.72 11% 

 

(e) 

Case 𝜏𝜏  
(sec) 

𝑑𝑑  
(ft) 

Wave speed 
(ft/s) 

Average speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 1.56 47.22 30.27 17.59 1.01 6% 
PC-HV 2.18 84.88 38.87 14.89 0.84 6% 
HV-PC 2.19 67.81 30.96 17.60 1.64 10% 
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Table 4-4: Calibrated parameters for Gipps’ model: (a) Time step = 0.1 s; (b) Time step = 0.5 s; (c) Time 
step = 1 s; (d) Time step = 2 s; (e) Time step = 5 s. 

(a) 

Case 𝜏𝜏  
(sec) 

Safety gap 
(ft) 

𝑏𝑏𝑛𝑛  
(ft/𝑠𝑠2) 

𝑏𝑏𝑛𝑛−1^  
(ft/𝑠𝑠2) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 1.45 4.34 3.64 3.50 16.55 2.31 15% 
PC-HV 1.38 9.38 1.18 1.36 14.05 2.21 17% 
HV-PC 1.89 5.66 2.10 3.27 16.33 2.75 18% 

 

(b) 

Case 𝜏𝜏  
(sec) 

Safety gap 
(ft) 

𝑏𝑏𝑛𝑛  
(ft/𝑠𝑠2) 

𝑏𝑏𝑛𝑛−1^  
(ft/𝑠𝑠2) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 4.02 5.35 2.98 1.64 16.35 1.74 12% 
PC-HV 4.52 10.08 1.31 1.08 14.09 1.65 13% 
HV-PC 4.82 4.70 2.47 2.16 16.27 2.40 17% 

 

(c) 

Case 𝜏𝜏  
(sec) 

Safety gap 
(ft) 

𝑏𝑏𝑛𝑛  
(ft/𝑠𝑠2) 

𝑏𝑏𝑛𝑛−1^  
(ft/𝑠𝑠2) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 4.27 5.42 2.30 1.50 16.47 1.38 9% 
PC-HV 3.94 8.00 1.05 1.56 14.15 1.42 11% 
HV-PC 6.01 6.51 2.10 2.72 16.39 1.91 13% 

 

(d) 

Case 𝜏𝜏  
(sec) 

Safety gap 
(ft) 

𝑏𝑏𝑛𝑛  
(ft/𝑠𝑠2) 

𝑏𝑏𝑛𝑛−1^  
(ft/𝑠𝑠2) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 5.79 4.45 2.08 1.50 16.81 1.29 8% 
PC-HV 3.77 7.64 1.28 1.10 14.28 1.39 11% 
HV-PC 5.32 9.53 3.90 2.16 16.66 1.57 11% 

 

(e) 

Case 𝜏𝜏  
(sec) 

Safety gap 
(ft) 

𝑏𝑏𝑛𝑛  
(ft/𝑠𝑠2) 

𝑏𝑏𝑛𝑛−1^  
(ft/𝑠𝑠2) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

PC-PC 4.30 15.43 1.69 1.93 17.59 1.80 10% 
PC-HV 2.60 11.91 2.19 1.24 14.89 1.78 13% 
HV-PC 4.44 17.97 4.14 1.94 17.60 1.99 12% 
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Table 4-5: Calibrated parameters for IDM: (a) Time step = 0.1 s; (b) Time step = 0.5 s; (c) Time step = 1 s; 
(d) Time step = 2 s; (e) Time step = 5 s. 

(a) 

Case 𝜏𝜏 
(sec) 

𝑎𝑎 
(ft/𝑠𝑠2) 

𝑉𝑉 
(ft/𝑠𝑠) 

𝑏𝑏 
(ft/𝑠𝑠2) 

𝑠𝑠0 
(ft) 

𝑠𝑠1 
(ft) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

 
PC-PC 1.00 1.45 95.60 11.97 6.80 2.33 16.55 0.34 2% 
PC-HV 1.10 0.50 86.25 11.36 5.15 1.17 14.05 0.25 2% 
HV-PC 2.37 0.74 74.41 8.74 6.22 1.98 16.33 0.29 2% 
 

(b) 

Case 𝜏𝜏 
(sec) 

𝑎𝑎 
(ft/𝑠𝑠2) 

𝑉𝑉 
(ft/𝑠𝑠) 

𝑏𝑏 
(ft/𝑠𝑠2) 

𝑠𝑠0 
(ft) 

𝑠𝑠1 
(ft) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

 
PC-PC 1.07 1.17 94.18 8.31 7.29 2.26 16.35 0.54 4% 
PC-HV 1.21 0.46 85.61 9.10 3.95 1.83 14.09 0.47 4% 
HV-PC 2.45 0.62 81.14 4.74 6.02 2.05 16.27 0.54 4% 
 

(c) 

Case 𝜏𝜏 
(sec) 

𝑎𝑎 
(ft/𝑠𝑠2) 

𝑉𝑉 
(ft/𝑠𝑠) 

𝑏𝑏 
(ft/𝑠𝑠2) 

𝑠𝑠0 
(ft) 

𝑠𝑠1 
(ft) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

 
PC-PC 1.15 1.12 82.08 7.68 7.26 2.09 16.47 0.74 5% 
PC-HV 1.12 0.40 82.28 8.22 3.90 1.54 14.15 0.64 5% 
HV-PC 2.46 0.54 86.83 2.94 5.63 2.37 16.39 0.71 5% 
 

(d) 

Case 𝜏𝜏 
(sec) 

𝑎𝑎 
(ft/𝑠𝑠2) 

𝑉𝑉 
(ft/𝑠𝑠) 

𝑏𝑏 
(ft/𝑠𝑠2) 

𝑠𝑠0 
(ft) 

𝑠𝑠1 
(ft) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

 
PC-PC 1.18 1.05 84.89 8.25 6.19 1.68 16.81 0.99 7% 
PC-HV 1.31 0.34 85.57 7.54 2.56 0.92 14.28 0.99 7% 
HV-PC 2.54 0.60 90.18 3.81 5.95 2.23 16.66 1.00 7% 
 

(e) 

Case 𝜏𝜏 
(sec) 

𝑎𝑎 
(ft/𝑠𝑠2) 

𝑉𝑉 
(ft/𝑠𝑠) 

𝑏𝑏 
(ft/𝑠𝑠2) 

𝑠𝑠0 
(ft) 

𝑠𝑠1 
(ft) 

Average 
speed 
(ft/s) 

RMSE 
(ft/s) 

Relative 
Error 

 
PC-PC 1.15 0.73 84.91 9.59 3.71 1.44 17.59 2.17 13% 
PC-HV 1.10 0.29 72.15 10.61 2.86 1.16 14.89 2.25 15% 
HV-PC 3.00 1.06 73.37 7.79 2.93 1.71 17.60 1.64 10% 
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(a) 

 

 (b) 

 

(c) 

 

Figure 4-5: Errors vs. time resolution for (a) PC-PC case; (b) PC-HV case; (C) HV-PC case.   
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4.3 Summary  

In this section, we calibrated the three typical CF models that are widely used in the literature, Newell’s 

model, Gipps’ model, and IDM, using the empirical vehicle trajectory data.  Calibration results suggest 

that (1) the model performance, in terms of errors, varies with time resolution of data in calibration.  The 

performance of IDM deteriorated with time resolution (i.e., the errors increased), but Newell’s model 

improved as the time resolution increases.  Gipps’ model seems complex, with the errors showing a 

convex relationship with the time resolution.  With the time resolution of 1s, a typical magnitude used in 

practice, IDM had smaller errors than Newell’s model and Gipps’ model (but errors for the latter two wre 

similar), but Newell’s model eventually surpassed IDM as the time resolution continued to increase.  Our 

analysis also suggests that (2) model parameters show different sensitivity levels to the time resolution.  

Newell’s model was insensitive to the time resolution, and the calibrated parameter values remained 

stable across different resolution levels, which is a desired property for CF models.  However, a large 

proportion of parameters in IDM and Gipps’ model varied significantly as the resolution changed, which 

presents a challenge for calibration.   

After a comprehensive evaluation of model’s advantage and limitations, Newell’s model turned out to be 

advantageous because (1) the model structure is extremely simple while it produces reasonable 

performance, (2) the calibrated parameters are not sensitive to the time resolution used in calibration, (3) 

the model parameters have clear physical meaning and can be measured directly from empirical data, and 

(4) extended models based on Newell’s model (Laval and Leclercq, 2010; Chen et al., 2012a) have 

demonstrated the capability to capture the formation and development mechanisms of stop-and-go 

oscillations.  Notice that the extended models will also lead to better model performance in terms of errors 

due to the more sophisticated model structure.   



33 
 

In the next section, we will use Newell’s model and its extended models as the basic framework to revise 

and build a model for CF behavior of HVs.       

5 Behavioral CF Model for Heavy Vehicles  

5.1 Background  

Chen et al. (2012a) proposed a behavioral model to capture the CF behavior of PCs at the individual level, 

named asymmetric behavioral model (AB model).  The model is an extension of the models by Laval & 

Leclercq (2010) and Newell (2002).  The AB model describes the time-varying CF characteristics of a 

vehicle when experiencing stop-and-go oscillations, given by the following equation:  

𝑥𝑥𝑜𝑜+1(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑥𝑥𝑜𝑜+1(𝑡𝑡 − 𝜏𝜏) + 𝑚𝑚𝑚𝑚𝑚𝑚{𝑢𝑢𝜏𝜏, 𝑥𝑥�𝑜𝑜+1(𝑡𝑡)},  𝑥𝑥𝑜𝑜(𝑡𝑡 − 𝜂𝜂𝑜𝑜+1(𝑡𝑡)𝜏𝜏) − 𝜂𝜂𝑜𝑜+1(𝑡𝑡)𝛿𝛿},                          (7) 

where 𝜏𝜏 = 1 𝜅𝜅𝑤𝑤⁄  denoting the wave trip time and 𝛿𝛿 = 1 𝜅𝜅⁄  is the jam spacing in the context of the 

Kinematic wave model (Richards, 1956; Lighthill & Whitham, 1955) with a triangular shaped 

fundamental diagram.   𝑥𝑥�𝑜𝑜+1(𝑡𝑡) is the distance that a vehicle could travel when considering bounded 

acceleration rate, and 𝑢𝑢 is the free-flow speed.  More importantly, 𝜂𝜂𝑜𝑜+1(𝑡𝑡), defined as the ratio of actual 

spacing 𝑠𝑠𝑜𝑜+1(𝑡𝑡) and equilibrium spacing 𝑆𝑆(𝑣𝑣𝑜𝑜(𝑡𝑡𝑜𝑜∗)), denotes a driver’s characteristics, which captures the 

(time-dependent) deviation from Newell’s model (Newell, 2002).   

The actual and equilibrium spacing can be obtained in the following way (illustrated in Figure 5-1(a)): at 

a given time 𝑡𝑡 on the follower’s trajectory 𝑥𝑥𝑜𝑜+1(𝑡𝑡), a characteristic line with slope equal to the wave speed 

w is launched to intersect the leader’s trajectory at time 𝑡𝑡𝑜𝑜∗.  Then the inter-vehicle spacing assuming that 

the leader travels at constant speed 𝑣𝑣𝑜𝑜(𝑡𝑡𝑜𝑜∗) is the actual spacing 𝑠𝑠𝑜𝑜+1(𝑡𝑡).  While the equilibrium spacing is 

given according to Newell’s CF model (Newell, 2002) for given speed 𝑣𝑣𝑜𝑜(𝑡𝑡𝑜𝑜∗):   

𝑆𝑆(𝑣𝑣𝑜𝑜(𝑡𝑡𝑜𝑜∗)) = 𝛿𝛿 + 𝜏𝜏𝑣𝑣𝑜𝑜(𝑡𝑡𝑜𝑜∗).                                                         (8) 
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Due to the geometric similarity, the ratio of 𝑠𝑠𝑜𝑜+1(𝑡𝑡) and 𝑆𝑆(𝑣𝑣𝑜𝑜(𝑡𝑡𝑜𝑜∗)) is equivalent to the ratio of actual wave 

trip time 𝜏𝜏𝑜𝑜+1(𝑡𝑡) and the equilibrium wave trip time 𝜏𝜏; i.e., 𝜂𝜂𝑜𝑜+1(𝑡𝑡) = 𝜏𝜏𝑜𝑜+1(𝑡𝑡) 𝜏𝜏⁄ .  With this relationship, 

the measurement of 𝜂𝜂𝑜𝑜+1(𝑡𝑡) boils down to measuring 𝜏𝜏𝑜𝑜+1(𝑡𝑡), which is much simpler: it equals to the 

difference between time 𝑡𝑡 and time 𝑡𝑡𝑜𝑜∗, as illustrated in the figure.  The equilibrium trip time 𝜏𝜏, 

representing the average behavior of vehicles, was set to be the mean of 𝜏𝜏𝑜𝑜+1(𝑡𝑡) across all vehicles in 

steady traffic conditions.    

Chen et al. (2012a,b) conducted an empirical measurement of the AB model for PCs and found that the 

evolution of 𝜂𝜂𝑜𝑜+1(𝑡𝑡) remained relatively stable before and after oscillations, denoted by 𝜂𝜂𝑜𝑜+10  and 𝜂𝜂𝑜𝑜+11  

respectively, but displayed different reaction patterns during oscillations.  Based on the stable level of 

𝜂𝜂𝑜𝑜+1(𝑡𝑡) prior to the oscillation (i.e., 𝜂𝜂𝑜𝑜+10 ), drivers were categorized into three types: originally aggressive 

(OA) with 𝜂𝜂𝑜𝑜+10 < 0.85, originally timid (OT) with 𝜂𝜂𝑜𝑜+10 > 1.15, and originally Newell (ON) with 0.85 <

𝜂𝜂𝑜𝑜+10 < 1.15.  Also, based on the shape of 𝜂𝜂𝑜𝑜+1(𝑡𝑡) evolution during oscillations, four reaction patterns 

were identified: concave, convex, constant, and non-decreasing, as illustrated in Figure 5-1(b) below.  

The four patterns were approximated as triangles, with the vertex denoted by  𝜂𝜂𝑜𝑜+1𝑇𝑇 , and the slopes of the 

edges denoted by 𝜀𝜀𝑜𝑜+10  and 𝜀𝜀𝑜𝑜+11 .  Thus, a driver’s CF behavior can be fully described by the driver 

category and the reaction pattern with five parameters (𝜂𝜂𝑜𝑜+10 , 𝜂𝜂𝑜𝑜+1𝑇𝑇 , 𝜂𝜂𝑜𝑜+11 , 𝜀𝜀𝑜𝑜+10 , 𝜀𝜀𝑜𝑜+11 ).  

Chen et al. (2014) proposed to divide the evolution of an oscillation cycle into 4 states: precursor, growth, 

stable, and decay.  It was found that each driver category had its preferred reaction pattern(s) and such 

preference varied with the development stage of the oscillation cycles.  This behavioral feature of vehicles 

led to the formation and development of traffic oscillations.  In general, OA drivers mostly adopted 

concave and non-decreasing reaction patterns, and OT drivers tended to use the convex pattern.  While 

ON drivers exhibited no significant difference in using each of the four patterns.  In the precursor and 

growth stages of oscillations, however, OA drivers had a higher probability of exhibiting the non-

decreasing reaction pattern by either adopting later response to the deceleration wave or larger minimum 
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spacing.  Consequently, these drivers exhibited 𝜂𝜂𝑜𝑜+11 > 𝜂𝜂𝑜𝑜+10 .  Such behavior contributed to the significant 

growth in oscillation amplitude.  Additionally, it can lead to reduction in discharge flow around a 

bottleneck; i.e., causing capacity-drop, which was confirmed by simulations.    

The series of studies cited above suggest that variable driver characteristics at the individual level are 

critical in capturing the dynamics of oscillatory traffic.  Therefore, in the following sections, we applied 

the framework of AB model to study the behavior of HVs.       

(a)      (b) 

                

Figure 5-1 (a) Measure of 𝜏𝜏𝑜𝑜+1(𝑡𝑡) (Figure 4 in Chen et al. (2012a)); (b) Reaction patterns (modified based 

on Figure 3 in Chen et al. (2012a)).  

5.2 Methodology  

To study the CF behavior involving HVs, we used the same data sample as in the calibration in Chapter 4 

(see the detailed introduction in Section 4.1).  As introduced, this study examined three types of CF 

combinations: HV-PC, PC-HV, and PC-PC.   The case of PC-PC is analyzed to verify that our method is 
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reasonable; i.e., it produces the estimates of 𝜏𝜏, 𝛿𝛿 and w that are consistent with the values from existing 

studies.  This case also serves as a benchmark against the behavior of the other two cases.   

We analyzed the CF behavior of the three CF types by adopting the AB model.  To measure the model 

parameters, the setting of wave speed is important as it will affect other parameters.  We obtained the 

wave speed for each CF type by first measuring the wave speeds for individual CF pairs using the method 

in Chiabaut et al. (2010) and taking the average across the sample within each CF type.  (The average 

wave speeds obtained in the fashion were also verified by the estimates from the Genetic algorithm 

(Goldberg, 1989) and the least square fitting for consistency.)   Then, the average wave speeds were used 

to measure 𝜂𝜂𝑜𝑜+1(𝑡𝑡) for individual CF pairs.   

The method in Chiabaut et al. (2010) essentially builds on Newell’s car-following concept that a vehicle 

maintains constant (𝜏𝜏, 𝛿𝛿) within the vehicle independent of speed.  This method identifies the wave speed 

that minimizes the variation of 𝜏𝜏 expressed by the following equation: 

𝑠𝑠(𝑤𝑤) =
�1
𝑛𝑛∑ �𝑤𝑤��⃗ |𝑚𝑚(𝑢𝑢�𝑖𝑖,𝑤𝑤)−𝑤𝑤��⃗ |𝑚𝑚(𝑢𝑢�𝚤𝚤,𝑤𝑤)���������������

2𝑛𝑛
𝑖𝑖=1

𝑤𝑤��⃗ |𝑚𝑚(𝑢𝑢�𝑖𝑖,𝑤𝑤)
,                                                                (9) 

where 𝑤𝑤 is the wave speed value used, 𝑤𝑤��⃗ |𝜕𝜕(𝑢𝑢�𝑜𝑜 ,𝑤𝑤) is the 𝜏𝜏 value identified for time step 𝑚𝑚, and �⃗�𝑣|𝜕𝜕(𝑢𝑢�𝚤𝚤,𝑤𝑤)������������� 

is the mean of 𝑤𝑤��⃗ |𝜕𝜕(𝑢𝑢�𝑜𝑜 ,𝑤𝑤) for all time steps.  The 𝑤𝑤 value that minimize 𝑠𝑠(𝑤𝑤) is the optimal wave speed 

identified.   

5.3 Results 

Table 5-1 presents the optimal wave speeds identified for the three CF types and average 𝜏𝜏 and 𝛿𝛿 

measured based on the optimal wave speeds.  The estimated values for PC-PC are consistent with the 

values reported from other studies (e.g., Laval & Leclercq, 2010; Duret et al., 2011), confirming that the 

method is reasonable.  For the case of HV-PC, both 𝜏𝜏 and 𝛿𝛿 are much greater than those for PC-PC 
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despite similar 𝑤𝑤 values.  This result is expected in view of limited acceleration/deceleration capability 

and much greater vehicle lengths of HVs.  The case of PC-HV presents a more interesting result.  The 

estimated 𝜏𝜏 (= 2.89 s) is the greatest of all the cases, and the estimated 𝑤𝑤 is much lower (in magnitude) 

than the other two cases.  The result suggests that when a PC is following a HV, it exhibits more ‘cautious’ 

behavior by maintaining larger time and space gaps, which could be attributable to limited sight.  The 

result is qualitatively consistent with Aghabayk et al. (2012).  

Table 5-1 CF Characteristics of CF pairs 

 
HV-PC PC-HV PC-PC 

𝜏𝜏: s 2.1 2.9 1.2 
𝛿𝛿: ft 44.7 37.6 27.8 
𝑤𝑤*: ft/s -21 -13 -23 

              * The negative sign denotes backward-moving waves in space. 

We also examined the composition of driver category and the reaction patterns for the three CF types; see 

Figure 5-2 for the result.  Notably, the driving behavior (i.e., relationship between driver category and 

reaction pattern) varies across the different CF types.  Particularly, for the HV-PC case, regardless of the 

driver category, drivers mainly adopted convex or non-increasing reaction patterns, in which τ increases 

(momentarily).  For the PC-HV case, the concave reaction pattern, where τ decreases momentarily, 

dominates in all driver categories.  These features are very different from the PC-PC case, where each 

driver category has its preference on reaction pattern as consistent with Chen et al. (2012a) (e.g., ON 

drivers have an equal chance for the different reaction patterns, but OT drivers prefer convex and non-

increasing patterns).  Closer examination of the driving behavior of the HV-PC pairs showed that most 

HVs either did not respond to the deceleration of the leader immediately, or they did not decelerate as 

much, which led to convex or even non-increasing reaction patterns (the latter happened when a HV did 

not pick up speed timely during and after acceleration).  This is not surprising given their limited 

acceleration/deceleration capability.  In contrast, the analysis of the driving behavior of the PC-HV pairs 

revealed that when a PC perceived deceleration from the HV ahead, it tended to decelerate more (than the 
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leader) and then gradually speed up during acceleration, leading to the concave reaction pattern.  This 

result, together with the larger 𝜏𝜏 and 𝛿𝛿, suggests cautious behavior of PCs when following HVs.  The 

distributions of AB model parameters are shown in Figure 5-3.  The distributions of 𝜀𝜀0 and 𝜀𝜀1 exhibit 

some difference across the three types: they resemble exponential distributions in the PC-PC case, 

whereas they are uniformly or normally distributed in the HV-PC and PC-HV cases.  Statistical tests 

suggest that 𝜀𝜀0 and 𝜀𝜀1 (within a given trajectory pair) is significant for the PC-HV case but insignificant 

for the other two cases.  A larger sample is needed to further confirm the distribution difference.   
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(a)                                                                              (b) 

   

(c)                                                                     

 

Figure 5-2: Driver category and reaction patterns for different CF types;  

(a) HV-PC; (b) PC-HV; (c) PC-PC 
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(a)                                                                                                   (b) 

  

(c)                                                                                                   (d) 

  

 

(e)                                                                                                   (f) 

  

Figure 5-3: Distributions of AB model parameters (left column for 𝜂𝜂0, 𝜂𝜂𝑇𝑇, and 𝜂𝜂1, right column for 𝜀𝜀0 
and 𝜀𝜀1): (a-b) PC-PC; (c-d) HV-PC; (e-f) PC-HV. 
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The above findings have an important implication for the development of oscillations.  Notably, the 

dominant convex or non-increasing reaction patterns by the HV-PC pairs imply dampening of oscillations; 

i.e., a reduction of speed variation between the maximum and minimum speeds within a stop-and-go 

cycle.  In contrast, the dominant concave reaction pattern by the PC-HV pairs implies the opposite effect, 

growth of oscillations, as verified in Chen et al. (2012a).  The net effect will depend on the respective 

probabilities and magnitudes of these opposing effects since the composition of the two CF types would 

be basically even (one HV will be associated with one PC-HV and one HV-PC pair).   

We performed a further empirical analysis to confirm this conjecture.  An example of a dampening effect 

is presented in Figure 5-4.  One can see in Figure 5-4 (a) that the HV, the follower, did not respond to the 

leader (a PC) to slow down, which resulted in a decreasing trend of 𝜏𝜏 (see Figure 5-4 (b)).  The HV later 

responded to the acceleration, leading to a convex reaction pattern.  For the example, the speed variation 

decreased from 20 ft/s for the leader to 10 ft/s for the follower.  Overall, we found that a much larger 

proportion of the HV-PC pairs (42%) exhibited the dampening effect, compared to the PC-PC pairs and 

PC-HV pairs (10% and 16%); see Table 5-2.  Moreover, the dampening effect was the greatest for the 

HV-PC pairs with the average reduction in speed variation of 9.4 ft/s, compared to 4.3 ft/s for the PC-PC 

pairs and 3ft/s in PC-HV pairs.  In contrast, the PC-HV pairs had the highest probability to amplify 

oscillations (21%) as we conjectured, although the magnitude was not significantly different from other 

cases.  We suspect that this is attributable to the heavy congestion, in which many vehicles already came 

to complete stop.    
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Figure 5-4: Dampening effect of TC pair (leader ID=416, follower ID=424 on lane 3 on I 80). 
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Table 5-2: Dampening and growth effect of CF pairs 

 
HV-PC (sample size: 19) PC-HV (sample size: 19) PC-PC (sample size: 30) 

 
Magnitude: ft/s Percentage Magnitude: ft/s Percentage Magnitude: ft/s Percentage 

Dampen 9.38 42% 3.00 16% 4.33 10% 
Grow -5.00 5% -3.50 21% -4.40 17% 

No change 0 53% 0 63% 0.00 73% 
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6 Heavy Vehicle Lane-Changing Characteristics  

This chapter presents the analysis on the LC behavior around HVs.  Specifically, we characterized LC 

rates around HVs (ahead and behind, and in and out) compared to PCs with the hypothesis that HVs 

induce different types and frequencies of LC around them.   

6.1 Methodology 

From the I 80 NGSIM dataset, we identified 82 HVs from lane 3 to lane 5.  Lanes 1 and 2 were excluded 

since the sample size was too small while lane 6 involved very frequent LC maneuvers from the on-ramp 

and to the off-ramp.  We also sampled PCs to establish the baseline.  Particularly, systematic leftward LC 

maneuvers were observed for PCs in the dataset, and this will be taken into consideration for interpreting 

LC rates around HVs.  The number of vehicles sampled is summarized in Table 6-1.   
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Table 6-1: Number of Vehicles Sampled 

 
I 80 

Lane HV PC 
1 Not studied 
2 Not studied 
3 58 114 
4 14 117 
5 10 116 
6 Not studied 

Total 82 347 
 

In this project, we studied LC rates around subject vehicles, either HV or PC.  (Note that the subject 

vehicles are not involved in the LC).  We first identified three LC types that occurred ahead of a subject 

vehicle, as illustrated in Figure 6-1, where symbols denote the origins (open square and triangle) and the 

destinations (open circle) of LC maneuvers, and the arrows denote the LC direction.  Particularly, C-

ahead-out and C-ahead-in refer to the LC maneuvers that move out from the current lane (where the 

subject vehicle is traveling) and move into the current lane, respectively.  A-ahead-out refers to the LC 

maneuvers that move outward (either to the right or left) from the adjacent lanes.  Similarly, three LC 

types behind a subject vehicle were defined accordingly: C-behind-out (filled square), C-behind-in (filled 

circle), and A-behind-out (filled triangle).  Furthermore, we considered the LC maneuvers that meet two 

criteria to assure that they could be influenced by the subject vehicle, which are illustrated in Figure 6-2: 

(1) the LC maneuvers occurred in the subject vehicle’s influence zone, defined as the time-space domain 

within 10 seconds of the subject vehicle’s trajectory; (2) there are at most two vehicles between the LC 

vehicle and the subject vehicle.  When considering LC in the adjacent lanes (i.e., A-ahead-out and A-

behind-out), the influence zone is obtained by projecting the subject vehicle’s trajectory on the adjacent 

lanes.  To quantify the LC effect around a subject vehicle, we define the LC rate as the number of eligible 

LC maneuvers per time and distance.   The definition will enable comparison between trajectories in 

different length, time duration, and (or) traffic condition.  
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Figure 6-1: LC types 

 

Figure 6-2: Criteria of effective LC 

 



47 
 

6.2 Results  

Figure 6-3 presents the average LC rates for the six different LC types for HVs and PCs; see Table 6-2 for 

the more detailed lane-wise result.  The main points are that (i) in general the LC rate of moving out is 

higher than moving in for PCs (e.g., LC rate out of the current lane (C-behind-out) is larger than the LC 

rate into the current lane (C-behind-in)); (ii) the difference between the LC rate in and out is much more 

significant for HVs compared to PCs, particularly when behind subject vehicles; and that (iii) the LC rates 

are generally lower involving HVs.  The first finding suggests that there is systematic leftward lane-

changing, which is attributed to the busy on-ramp on the right.  The 2nd finding suggests that drivers are 

more likely to move out of the lane when they are behind HVs, which is consistent with the typical 

driving preference to avoid driving behind HVs.  The third finding, however, has rather convoluted 

implications.  On the one hand, a lower LC rate due to HVs implies better traffic stability since previous 

studies (Ahn & Cassidy, 2007; Mauch & Cassidy, 2002) have shown that LC maneuvers trigger traffic 

oscillations to form and grow.  On the other hand, the presence of HVs can lead to underutilization of 

road capacity (capacity drop in near saturated conditions) since drivers are less likely to drive behind the 

HVs, leaving large gaps behind them (see the trajectories circled in Figure 6-4).  These findings, together 

with the findings related to CF, suggest that HVs can help improve traffic stability directly (via 

dampening effect in CF) and indirectly (via reduced LC), though at the expense of possible capacity 

underutilization. 
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Figure 6-3: Average LC rates by LC type. 

 

Figure 6-4: Example of large gap behind HV (I 80 lane 3. Red trajectories are HVs). 

  

Speed: ft/s
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Table 6-2: LC rate (number/h/1000ft) for HV and PC 

 
C-behind-in 

C-behind-
out C-ahead-in C-ahead-out 

A-behind-
out A-ahead-out 

HV 
Lane3 9 32 23 29 7 5 
Lane 4 43 59 50 17 25 27 
Lane 5 48 61 26 15 39 14 

Average 20 40 28 25 14 10 
PC 

Lane3 50 47 16 32 26 24 
Lane 4 31 47 27 58 45 53 
Lane 5 74 99 26 76 82 46 

Average 51 65 23 55 51 41 
 

6.3 Summary of CF and LC Analysis 

Chapter 5 and 6 conducted an empirical study of the CF behavior and LC effect of HVs.  For the CF 

behavior, we found that different vehicle combination of CF pairs had very different features when 

experiencing stop-and-go traffic.  PC-HV case showed the largest time gap (𝜏𝜏) and PC-PC the smallest.  

More importantly, HV-PC case showed significant dampening effect; i.e., they decreased the speed 

variation of the stop-and-go cycle.  This effect was associated with the convex or non-increasing reaction 

pattern when the following HV responded to stop-and-go waves, in which HVs either responded late or 

decelerate in a milder way.  For the LC effect, we found that HVs had the discouraging effect; i.e., they 

discouraged other vehicles to move in behind the HVs, which could be because of the high pressure when 

driving behind the HVs.  This effect favors traffic stability by reducing potential disturbance imposed by 

LCs, but could undermine roadway utilization by creating large gap behind the HVs.  It was also found 

that drivers were less likely to change lane when they were driving ahead of HVs, which could be because 

the traffic around HVs was relatively stable.  Table 6-3 and Table 6-4 provide summaries for the key 

effects of the CF and LC behavior of HV, respectively.  These results suggest that the effects of HVs on 
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the traffic flow are complex and a comprehensive evaluation, incorporating both CF and LC behavior, is 

needed.   

Table 6-3: Summary on the effects of CF behavior of HV 

CF behavior Capacity-drop Source Mechanism 

Dampening effect - HV-PC HVs (convex, non-increasing reaction 
pattern) dissipate oscillations or prevent 
oscillations to form. 

Growth effect + PC-HV PCs (concave reaction pattern) cause 
oscillations to grow.  

 

Table 6-4: Summary on the effects of LC behavior of HV  

LC behavior Capacity-drop Source Mechanism 

LC Out > LC In + Large gap 
behind HVs 

It is presumably less desirable to drive 
behind HVs. 

Suppressed LC  - Traffic around 
HVs 

In general HVs discourage LCs around 
them. 
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7 Traffic Simulations  

As an initial effort to evaluate the impact of HVs in traffic flow, simulations were conducted to examine 

the effects of HVs’ CF behavior.  Particularly, we focused on two typical types of bottleneck: 

rubbernecking and uphill segment.  The former is a good representation of oscillatory traffic because a 

wide variety of sources of disturbances cause drivers to rubberneck and instigate stop-and-go oscillations.  

The latter uniquely affects HVs due to the sensitivity of HVs’ performance to the grade.    

7.1 Rubbernecking Bottleneck  

The rubbernecking experiment used a similar setting to Chen et al. (2012a), in which traffic was 

simulated over a simple one-lane flat freeway segment with the length of 4.6 km; see Figure 7-1.  Notice 

that a rubbernecking zone is located at [2.5km, 2.6km] from the most upstream point, where vehicles have 

a certain probability to slow down (i.e., rubberneck).  Vehicles start to accelerate to free-flow speed after 

they leave the zone.  To simplify the scenario and focus on the impact of HVs, we varied the HV 

proportion but fixed other simulation parameters.  Namely, we assumed that vehicles have a probability 

of 6% to slow down, and the speed decreases by 40% after rubbernecking.  To simplify the simulation, 

we also assumed that vehicles (both PCs and HVs) followed the same wave speed and they had a 

consistent maximum acceleration rate of 3 m/s2.  The HV proportion was varied from 0-25%.  Measured 

parameters from the AB model (including driver category, reaction pattern, etc.) were used to reproduce 

CF behavior of PCs and HVs.  The simulations produced trajectories of each individual vehicle.  Each 

parameter setting had 20 runs with random seeds.  

Based on simulation results, we measured the discharge flow 2km downstream of the rubbernecking zone.  

Figure 7-2 shows the measured flow.  Notice that the figure shows a decreasing trend as the HV 

proportion increases.  This is not surprising since the CF spacing required by HV-PC and PC-HV is much 

larger than PC-PC.  Therefore, an equivalent factor was used to normalize different spacing level to the 
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standard PC unit.  Namely, the equivalent factor, denoted by 𝑅𝑅𝐸𝐸𝐻𝐻𝑉𝑉−𝑃𝑃𝑃𝑃 , was obtained by calculating the 

ratio of time headway in saturation condition for HV-PC and PC-PC, which was reduced to the ratio of 𝜏𝜏0 

for HV-PC and 𝜏𝜏0 in PC-PC since the same wave speed was used.    The equivalent factor for PC-HV, 

ETPC−HV was obtained in a similar way.  The equivalent factors were estimated as: ETHV−PC = 1.8 and 

ETPC−HV = 2.4.  Figure 7-3 shows the normalized discharge flow, which displays an increasing trend.  

Note that in steady traffic conditions (i.e., no oscillations), the normalized discharge flow is expected to 

remain constant with respect to the HV proportion.  Thus, this increase in discharge flow is attributed to 

the unique impact of HVs in oscillatory traffic.  In particular, we conjecture that it is because HV traffic 

decreases the probability of oscillation formation and growth and consequently reduces the overall 

capacity-drop.  This is supported by the following evidence.  We found that the period of oscillations 

increased with HV proportion; see Figure 7-4 for average period plot and Figure 7-5 and Figure 7-6 for 

trajectory snapshot for HV=0 and HV=25%.  On close examination, it was found that some oscillation 

precursors (triggered by either PC or HV rubberneckers) were dissipated by HVs or their immediate 

followers; see case 1 labeled in Figure 7-7 for an example.  Even partially-formed oscillations were 

dissipated; see case 2.  Such dissipation is consistent with the dampening effect observed in the empirical 

data revealed in Chapter 5, which was attributed to the large spacing maintained by HV-PC pairs and their 

reaction patterns (mostly convex or non-increasing).  With less frequent oscillations, the effect of 

capacity-drop associated with oscillations is smaller; i.e., the normalized discharge flow is larger.   

In summary, our simulations show the impact of HV’s CF behavior in oscillatory traffic.  HVs in 

congested traffic streams lead to (1) more stable traffic (i.e., less frequent oscillations) and (2) smaller 

capacity-drop.  In terms of roadway utilization, despite (2), the measured discharge flow (in vehicle/hour) 

decreases with HV proportion due to large spacing maintained by HVs and their immediate followers. 
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Figure 7-1: Simulation sketch 

 

Figure 7-2: Measured discharge flow vs. HV proportion 
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Figure 7-3: Normalized discharge flow vs. HV proportion 

 

 

Figure 7-4: Traffic oscillation period vs. HV proportion 
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Figure 7-5: Traffic condition with HV proportion=0 

 

Figure 7-6: Traffic condition with HV proportion=20% 
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Figure 7-7: Traffic dynamics zoomed in from Figure 7-6 
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7.2 Uphill Bottleneck  

In this simulation, we studied a highway bottleneck caused by an uphill segment.  Particularly, we aimed 

to study two cases: (1) the pure effect of grade and (2) the compound effects when the grade is coupled 

with variable driver characteristics.  For this purpose, we simulated a one-lane highway segment with the 

length of 6km; see Figure 7-8.  Notice that there is an extended uphill segment located at [2km, 4km] with 

grade 𝐺𝐺 in percentage, and other segments are flat.   Next, we introduce the model to capture vehicles’ 

mechanics on grade and then the simulations for the two cases.  

 

Figure 7-8: Roadway Sketch for Uphill simulations  

 

7.2.1 Vehicle mechanics on grade  

To capture vehicles’ mechanics on hills, we adopted FHWA’s kinematic vehicle model (FHWA, 2000), 

which describes a vehicle’s acceleration in the following way:  

𝑎𝑎(𝑣𝑣) = 𝑎𝑎𝑚𝑚 �1 − 𝑣𝑣
𝑢𝑢
� − 𝑔𝑔𝑔𝑔

100
,                                                          (10) 

where 𝑎𝑎(𝑣𝑣) is the acceleration at speed 𝑣𝑣, 𝑎𝑎𝑚𝑚 is the maximum acceleration rate of a vehicle, 𝑢𝑢 is the free-

flow speed, 𝑔𝑔 (=9.8 𝑚𝑚/𝑠𝑠2) is the gravity constant, and 𝐺𝐺 is the grade in percentage.  Clearly, the 1st term 
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in the equation (𝑎𝑎𝑚𝑚 �1 − 𝑣𝑣
𝑢𝑢
�) denotes a vehicle’s acceleration capability constrained by the vehicle’s 

mechanic feature, while the 2nd term denotes the deceleration imposed by the gravity.  Particularly, the 

maximum acceleration rate (𝑎𝑎𝑚𝑚) is an important mechanic feature of the vehicle, which is determined by 

the horsepower.  In addition to 𝑎𝑎𝑚𝑚, a vehicle’s acceleration varies with the real-time speed, which reaches 

the maximum at complete stop (𝑣𝑣 = 0) and becomes zero at free-flow speed.  By contrast, the 

deceleration imposed by gravity only depends on the grade.  The balance of these two terms determines 

the actual acceleration of a vehicle.  Specifically, a vehicle entering the uphill segment at free-flow speed 

𝑢𝑢 will be forced by the gravity to slow down until the gravity is compensated by its acceleration 

capability and the vehicle reaches the cruise speed (i.e., 𝑎𝑎(𝑣𝑣) = 0), which is given as follows:  

𝑣𝑣𝑜𝑜𝑟𝑟𝑢𝑢𝑜𝑜𝑠𝑠𝑜𝑜 = 𝑢𝑢 �1 − 𝑔𝑔𝑔𝑔
100𝑎𝑎𝑚𝑚

�.                                                                       (11) 

After passing the uphill segment, a vehicle will start to accelerate to recover to free-flow speed.  

Notably, HVs usually have smaller maximum acceleration rate (𝑎𝑎𝑚𝑚) due to the weight and size of the 

vehicles, compared to PCs.  Thus, the grade has a much more profound on HVs.  For example, the cruise 

speed is much smaller with a smaller 𝑎𝑎𝑚𝑚.  To capture this effect, we assumed that PCs have 𝑎𝑎𝑚𝑚 = 3𝑚𝑚/𝑠𝑠2 

and HVs only have 1/3 of the acceleration capability with 𝑎𝑎𝑚𝑚 = 1𝑚𝑚/𝑠𝑠2.   

 

7.2.2 Pure Effect of Grade  

In this simulation setting, we aimed to focus only on the effect of grade.  For this purpose, it is assumed 

that vehicles desire to follow Newell’s model (Newell, 2003) but are still constrained by the impacts of 

grade.   For the model’s parameters, since we had a small sample from empirical measurement, we used 

the method of sample enumeration (Ben-Akiva and Lerman, 1985).  Particularly, for each CF type, we 
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constructed a sample matric for 𝜂𝜂0 using the empirical measurement result in Chapter 5.   When a vehicle 

was generated in the simulation, depending on the CF type, it was assigned with a value for 𝜂𝜂0 that was 

randomly drawn from the corresponding sample matric of the CF type.  Thereafter, the vehicle would 

attempt to maintain the same 𝜂𝜂0 level regardless of the traffic condition; i.e., it aimed to follow Newell’s 

CF model.   

In the simulations, we varied the grade from 0 to 7% and the HV proportion from 0 to 25%.  Each 

parameter combination was repeated over 20 runs with random seeds.  Figure 7-9 and Figure 7-10 show 

the absolute discharge flow in vehicle per hour and the normalized flow in PC/h.  Figure 7-11 replotted 

the relationship between normalized discharge flow and grade.  From the results, we obtained the 

following remarks:       

R-1: When the grade was positive (i.e., 𝐺𝐺 > 0), the normalized discharge flow decreased with 

HV proportion, but quickly converged mostly after 𝐻𝐻𝑉𝑉 > 5%; see the plot in Figure 7-10.    

R-2: The overall normalized discharge flow level decreased with the grade (see the curves 

corresponding to different grade levels in Figure 7-10).    

R-3: The impact of grade was much more profound for HVs than PCs.  Particularly, for PCs the 

normalized discharge flow didn’t decrease until the grade reaches 3%, and the overall reduction 

was 20% at the grade of 7%.  By contrast, for HVs, the grade’s effect was significant even at 1% 

and the normalized discharge flow reduced by 44.5% at grade 7% even when there were only 5% 

of HVs; see Figure 7-11.      

Regarding R-1, the former part of the result was expected because HVs slow down on the uphill segment 

and create voids due to the limited acceleration capability.  Since the acceleration capability was much 

smaller for HVs, the voids were much larger for HVs than PCs; i.e., the discharge flow was much smaller 

when HVs are present.  This is also illustrated in the trajectory plot of Figure 7-12.  The quick 
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convergence, however, is puzzling.  We suspect that it is due to complex interactions between grade, 

vehicle mechanic, and variable driver characteristics, and further studies are needed to gain better insight.   

R-2 was expected as when the grade was larger, it induced larger voids in the HVs.  For example, the 

cruise speed would be smaller; as shown in Eqn. (11).  Similarly, the result of R-3 was straightforward as 

implied by Eqn. (10-11).  In general, the grade effect would be much more significant in vehicles with 

smaller 𝑎𝑎𝑚𝑚.   

   

Figure 7-9: Absolute discharge flow in Newell’s CF model (legend denotes the 𝐺𝐺 value) 
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Figure 7-10: Normalized discharge flow in Newell’s CF model (legend denotes the 𝐺𝐺 value) 

 

Figure 7-11: Normalized discharge flow vs. grade -Newell’s CF model (legend denotes the HV 

proportion) 
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Figure 7-12: Trajectory plots: Newell’s CF model in uphill segment 

 

7.2.3 Compound Effects of Grade and Variable Vehicle Characteristics  

In this simulation experiment, we studied the compound effects of grade and variable driver 

characteristics.  For this purpose, we assumed that vehicles follow the AB model.  Particularly, in the 

generation of model parameters, we applied the same sample enumeration method, but the parameters 
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include all five parameters of the AB model (𝜂𝜂𝑜𝑜+10 , 𝜂𝜂𝑜𝑜+1𝑇𝑇 , 𝜂𝜂𝑜𝑜+11 , 𝜀𝜀𝑜𝑜+10 , 𝜀𝜀𝑜𝑜+11 ) (note that 𝜀𝜀𝑜𝑜+10  and 𝜀𝜀𝑜𝑜+11  were 

assumed to be the same since statistic test showed that the difference was not significant).   

Similar to the experiment of grade-only, we varied the grade from 0 to 7% and the HV proportion from 0 

to 25%.  Each parameter combination was repeated over 20 runs with random seeds.  Figure 7-13 and 

Figure 7-14 showed the absolute discharge flow in vehicle per hour and the normalized flow in PC/h.   

Notice that the results are similar to the previous case when Newell’s model was used and remarks (R-1 

to R-3) held for this case too.  This is not surprising given the prevalent effect of grade and HVs.  A 

comparison of the normalized discharge flow in the two cases was shown in Figure 7-15.  Notably, when 

the HV proportion was positive, the flow difference (normalized discharge flow from Newell’s model 

subtracted by the discharge flow from AB model) decreased with the grade.  This could be because when 

the grade was significant, the grade effect was dominant and the variable driver characteristics played a 

marginal role, which led to similar results from the two models.  The figure also suggested that with given 

grade level, the flow difference decreased with the HV proportion.  This was because when the HV 

proportion was significant, the traffic became too congested (due to the high proportion of HV) and 

traveled at the cruising speed of HVs, such that the variable driver characteristics only played a marginal 

role.  In fact, this could been seen by comparing the trajectories in the two cases as shown in Figure 7-12 

and Figure 7-16 respectively.  Notice that for the same grade (5%), when HV proportion was 0, there 

were more disturbances in the traffic produced from AB model because disturbances were more likely to 

grow and get amplified in the AB model.  However, when the HV proportion was 15%, the bottleneck 

(i.e., uphill segment) was mostly at the cruising state of HVs, and the difference between the two models 

was very small.   

The simulation result suggests that the traffic dynamics on the uphill result from the compound effects of 

grade, vehicle’s mechanic features, and driver’s variable characteristics.  The interactions were very 

complex.  The mechanisms and quantitative formulations are left for future studies.    



64 
 

 

Figure 7-13: Normalized discharge flow in AB model (legend denotes the 𝐺𝐺 value) 

 

 

Figure 7-14: Absolute discharge flow in AB model (legend denotes the 𝐺𝐺 value) 
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Figure 7-15 : Difference of normalized discharge flow in Newell’s CF model and AB model (legend 

denotes the 𝐺𝐺 value) 
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Figure 7-16: Trajectory plots: AB model in uphill segment 
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8 Conclusions and Discussions 

In this project, three well-known CF models, Newell’s model, Gipps’ model, and IDM, were calibrated 

using real trajectory data for HVs.  Calibration results suggest that the model performance, in terms of 

errors, varies with time resolution of data in calibration.  The performance of IDM deteriorated with time 

resolution (i.e., the errors increased), but Newell’s model improved as the time resolution increased.  

Gipps’ model seems complex, with the errors showing a convex relationship with the time resolution.  

With the time resolution of 1s, a typical magnitude used in practice, IDM had smaller errors (5%) than 

Newell’s model and Gipps’ model (the latter two have similar errors, about 8-13%), but Newell’s model 

eventually surpassed IDM as the time resolution continues to increase.  Our analysis also suggests that 

model parameters show different sensitivity levels to the time resolution.  Newell’s model was insensitive 

to the time resolution, and the calibrated parameter values remained stable across different resolution 

levels, which is a desired property for CF models.  However, a large proportion of parameters in IDM and 

Gipps’ model varied significantly as the resolution changes, which presents a challenge for calibration.  

After a comprehensive evaluation of model’s advantage and limitations, Newell’s model turns out to be 

advantageous because (1) the model structure is extremely simple while it produces reasonable 

performance, (2) the calibrated parameters are not sensitive to the time resolution used in calibration, (3) 

the model parameters have clear physical meaning and can be measured directly from empirical data, and 

(4) extended models based on Newell’s model (Laval and Leclercq, 2010; Chen et al., 2012a) had 

demonstrated the capability to capture the formation and development mechanisms of stop-and-go 

oscillations. 

For the next phase of the project, the AB model (Chen et al., 2012a), an extended Newell’s model, was 

modified to further examine the effects of HVs’ CF behavior on two key traffic phenomena: capacity drop 

and stop-and-go oscillations.  This extended Newell’s model was selected over IDM because (1) it is 

much simpler, yet effective in describing the key traffic phenomena, (2) the model parameters have 
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clearer physical meaning that could be measured directly from the real data, and (3) most importantly, the 

model described driving behavior at the individual vehicle level, which was critical to unveiling 

mechanisms of evolution of oscillations and their impact on capacity-drop.   

Based on the AB model, an empirical analysis was conducted to better understand the CF and LC 

behavior of HVs.  For CF behavior, we measured the parameters of the AB model for three CF 

combinations, HV-PC, PC-HV, and PC-PC.  It was found that the PC-HV pairs showed the largest 

average time gap (𝜏𝜏) and the PC-PC pairs showed the smallest.  More importantly, the HV-PC case 

showed a significant dampening effect by decreasing speed variations during stop-and-go cycles.  This 

effect was associated with the convex or non-increasing reaction pattern of HVs, as a result of responding 

late to a stop-and-go wave or decelerating in milder way.  On the other hand, HVs maintained much 

larger spatial gap, resulting in lower flow (measured in veh/h).  For the LC effect, it was found that HVs 

had a discouraging effect; i.e., vehicles were less likely to insert behind HVs presumably due to less 

desirable CF conditions (e.g., limited sight distance).  This effect favors traffic stability by reducing 

potential disturbances instigated by LCs, but could undermine roadway utilization by creating a large gap 

behind the HVs.  For both CF and LC behavior, there were behavioral aspects that could favor and 

undermine the traffic flow efficiency and the interaction was complex.  A comprehensive evaluation of 

HVs integrating both CF and LC behavior is needed in future research.    

Based on the results of empirical studies, this study conducted simulations to study the impacts of the CF 

behavior of HVs in two typical types of highway bottleneck: rubbernecking and uphill segment.  In the 

rubbernecking experiment, it was found that HVs reduced the formation and growth of traffic oscillations.  

This resulted in reduced overall capacity-drop: the normalized bottleneck discharge flow in PC/h 

increased with HV proportion.   In the uphill experiment, it was found that restrained acceleration due to 

roadway grade could cause a significant reduction in discharge flow and that the effect was much more 

profound for HVs than PCs.  It was also found that the effect of variable driver characteristics diminished 
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with the grade and HV proportion.  Lastly, with given positive grade, the effects of HV proportion 

quickly diminished and became marginal, which was a puzzling result. It is suspected that it is a result of 

complex interactions among grade, vehicle mechanics, and variable driver characteristics.  Further studies 

are needed to elucidate these interactions.   

In the simulations, considering both CF and LC behavior, it was found HVs led to more stable traffic and 

produced compound effects on flow efficiency: they required large CF gaps, which resulted in lower flow 

(in vehicle/hour); on the other hand, they mitigated traffic oscillations, thereby diminishing capacity drop 

and improved the normalized discharge flow (in PC/h).  Such effects were particularly profound in 

oscillatory traffic, such as highway with rubbernecking bottlenecks.  On highway uphill segments, HVs 

led to significant reduction in discharge flow (in PC/h) because they had limited acceleration capability.  

The effect of variable driving characteristics seemed to become marginal when the grade or (and) HV 

proportion was significant.      

Due to the data limitation, this research was unable to build a meaningful LC model.  Further research is 

needed to address this problem and then integrate both the CF and LC models to have a comprehensive 

evaluation of HV’s impact.  Also, the CF behavior of heavy vehicle-following-heavy vehicle was not 

studied due to the lack of reasonable sample size.  A future study is needed to complete the analysis of the 

HV behavior.  Last but not least, this study examined only one site and comparison across different sites 

is needed to further generalize the findings.  We will investigate these problems in future research.  
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