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Executive Summary 
Network link travel time estimation for commercial vehicles is essential to freight operations and 
planning. Time-dependent link travel time may help carriers as they plan routes and schedule 
fleet dispatching to avoid traffic congestion, especially recurrent urban congestion. However, 
travel time estimation for commercial vehicle movement is challenging due to limited data and 
high variability arising from traffic congestion. Most sensor or loop detector data available do not 
cover the entire network over a sufficiently long time for quality analysis of network link 
performance. This project estimates link travel times on a transportation network based on 
network connectivity and trips’ entry/exit locations and time stamps. The entry/exit time stamp of 
each trip tells the time duration of entire itinerary of a trip. The research team utilizes this limited 
information to infer the entire network performance by developing appropriate method. The 
proposed method is expected to be used as an effective network travel time analysis tool for the 
purpose of improving traffic operations and planning. It may also be further used to assess 
performance of networks of other modes such as subway or bus systems with passengers’ 
entry and exit information tracked at check in/out points. Major freight corridors where trucks are 
tracked with GPS periodically with a certain time interval (e.g. 5 or 15 minutes) may also be 
considered a special case of a network where itineraries overlap with each other on the road 
sections. 

This study uses the sparse truck GPS data in particular for the link travel time estimation. First, 
we present a naïve method for truck speed analysis on individual links. The naïve method can 
compute the average travel speed and variation on each link individually as input for further 
travel time analysis. Second, to address the issue of ignoring those truck trips with large 
intervals covering multiple links, we present a network mapping method that maps the link 
performances using the itinerary travel times. We conduct a case study using the San Antonio 
corridor network, a major freight corridor. In addition, we further test the methods with simulation 
data partially on I-94 and I-894, a highway corridor in the Milwaukee, Wisconsin area. The test 
results indicate that the proposed network mapping method appears practical for application to 
the link performance analysis on freight corridors for truck transport. The research team 
recommends the mapping method for the future use of network link travel time estimation. 
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Introduction 

Background 
Travel time is usually the most important factor when transporting freight from an origin to a 
destination. Accurate travel time estimation on a transportation network can provide supportive 
information for decision making in both the private sector (e.g., tracking fleets for trucking 
companies) and public agencies (e.g., congestion mitigation for urban transportation planners). 
In particular, link travel time estimation for commercial vehicle movement is essential to both 
planning and operations in terms of both efficiency and reliability. For example, time of day-
dependent link travel time may help carriers as they plan routes and schedule fleet dispatching 
to avoid traffic congestion, especially recurrent urban congestion. 

However, travel time estimation for commercial vehicle movement is always challenging due to 
limited data and high variability due to recurrent and non-recurrent congestion. Most available 
sensor or loop detector data do not cover the entire network over a sufficiently long time for 
quality analysis of network link performance. In addition, these data are typically collected and 
stored in an aggregate format, not suitable for detailed travel time analysis (McCormack & 
Hallenbeck, 2006). In the last two decades, the Global Positioning Systems (GPS) data for 
traffic monitoring and planning has become widely available. Probe vehicles equipped with 
tracking devices (e.g. GPS or mobile phones) act as mobile traffic sensors. They are capable of 
tracing a vehicle’s travel times on the real-time basis or collecting instantaneous speeds at any 
network location without need of roadside equipment. These probe vehicles can provide 
researchers with large amounts of disaggregated traffic data for evaluating link performance and 
detecting congested roadway locations. The freight industry is aware of the importance of GPS 
tracking data for freight planning, and many companies have replaced the traditional sheet-
based truck trip logs with GPS recordings of the disaggregated trip information (Greaves & 
Figliozzi, 2008). However, most trucking companies are reluctant to share their data for planning 
or research purposes due to customer privacy and strategic concerns. Truck tracking GPS data 
is limited and only available for specific regions (Morgul et al., 2013). Although highway 
performance data is available from contracted trucking firms and at shorter time intervals than 
before, the fundamental scientific question still remains: what is the utility of sparse GPS data 
for evaluating network link performance? How much data is considered sufficient for network 
link performance analysis? 

This project aims to address those issues, but also explore the research problem to a larger 
context. Since nowadays the wide use of blue tooth and Automated Vehicle Identification (AVI) 
technologies has created a situation in which vehicles’ entry and exit information on a network is 
known, how to efficiently utilize this information is a meaningful question. Furthermore, efficient 
utilization of this data may give rise to methodologies about how to most economically obtain 
necessary data. The entry/exit time stamp of a recorded trip tells the time duration of the entire 
itinerary. The research group proposes to develop methods to utilize this trip information to infer 
the link travel times on the entire network. Prior studies on travel time estimation mostly focus 
on a line structure network, such as arterial roadway with signalized intersections, or a highway 
corridor comprising of segments with varying traffic conditions. This project proposes to extend 
the existing travel time estimation techniques to a general network. Note that the travel time 
estimation methods may also be used to assess the performance of networks of other modes 
such as subway or bus systems with passengers’ entry and exit information tracked at check 
in/out points. Major freight corridors where trucks are tracked with GPS periodically with a 
certain time interval may also be considered a special case of a network where itineraries 
overlap with each other on the road sections. 
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Study Objectives 
This project provides a methodology that uses the limited but available truck trip information, 
motivated by the importance of estimating network-wide link travel times for freight transport. 
The project report provides a review of existing methods to estimate link travel times for traffic 
monitoring or planning purposes. The study uses the empirical truck GPS data that track truck 
movement in certain time intervals such as 5 or 15 minutes. Each tracked time interval is 
considered as a trip in this research. The trips overlap with each other on links over a network. 
The study aims to utilize those overlapping trips to estimate the link travel times along the freight 
corridors. 

This research problem also arises in a larger context. For example, on a toll road, entry and exit 
information is recorded for each vehicle. In that problem, a large number of itineraries are 
recorded overlapping with each other, much like subway transit passenger data, for example. 
Navigable waterway systems share similarities and may be able to apply the method for 
maritime transport performance analysis. In summary, the research problem in this project 
arises out of a trucking performance application, but is applicable to many more transportation 
problems. 

Task Overview 
The research team completes the following tasks, as described in the original scope of work. 
These efforts are summarized and discussed in greater detail throughout this report. 

1. Review the previous study on roadway travel time estimation. 

2. Present the methodology. 

a. Naïve method using speed analysis. 

b. Mapping method using trip travel times. 

3. Conduct the case study of San Antonio corridor network.  

4. Develop a simulation framework to validate and evaluate the proposed method. 

5. Conclude the study and propose future research directions. 
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Literature Review 
This chapter reviews the relevant previous work on roadway travel time estimation. There are 
several systems commercially available that are capable of estimating roadway travel times on 
the real-time basis. They can be broadly classified into three categories: spot speed 
measurement systems, spatial travel time systems, and probe vehicle technologies (Dion and 
Rakha, 2006). The relevant research based on these systems is introduced as follows.  

Spot Speed Measurement Systems 
During the last two decades, spot speed measurement systems, specifically inductance loop 
detectors, have been the main source of real-time traffic information. Substantial research 
efforts have focused on this indirect estimation of roadway travel times using each vehicle’s 
speed observed at discrete points along the roadway. Other technologies for measuring spot 
speeds have also evolved, such as infrared and radar technologies. Regardless of the 
technology, the spot measurement approaches only measure traffic stream speeds over a short 
roadway segment at fixed locations along a roadway. These spot speed measurements are 
used to compute spatial travel times over an entire trip using space-mean-speed estimates. 

The prominence of this spot speed measurement approach results from the large number of 
available traffic data provided by inductance loop detectors. Additional efforts have also been 
made in improving the accuracy of spot speed estimations from single loop detectors (Coifman, 
2001; Dailey, 1999; Pushkar et al., 1994). However, even with accurate spot speed estimations 
obtained (as in the case of using double loop detectors), travel time estimates could still be 
flawed due to extrapolating spot measurements to a roadway section, with the possibility of 
different traffic conditions along its length. It is noted that this issue particularly arises on 
roadways with a low density of detection sites. 

Hopkin et al. (2001) suggest that one detector site every half kilometer (i.e. nearly 0.3 mile) of 
highway is desirable to provide accurate travel time estimates. Several approaches have been 
developed to overcome the issue and avoid the enormous cost of intensive loop surveillance, 
such as the identification of vehicle trajectories between loop detectors (Coifman, 2002; Li et al., 
2006), and the sensor deployment methods for reliable travel time estimation (Hu et al., 2009; Li 
and Ouyang, 2011). In addition, it shall also be taken into account that the loop speed estimates 
in the case of stop and go traffic situations do not adequately represent the space mean speed 
of the traffic stream. Therefore, the indirect estimation of roadway travel times using spot speed 
measurement systems has limitations to generate accurate travel time estimates. 

Spatial Travel Time Systems 
Different from indirect estimation using spot speed measurement, study on travel time 
estimation using loop detector data has also focused on direct measurement, consisting of 
measuring the time interval that a particular vehicle takes to travel from one point to another. 
Many researchers have proposed a smart use of loop detector data, by matching the particular 
vehicles in consecutive loop detectors based on their characteristic lengths (Coifman and 
Cassidy, 2002; Coifman and Ergueta, 2003; Coifman and Krishnamurthya, 2007), or particular 
inductive signature on the detectors (Abdulhai and Tabib, 2003; Sun et al., 1999). However, 
these techniques would require the upgraded hardware and/or software loop configurations, 
thus they have not been widely put into practice for operating highway agencies. 

Other than the loop detector data, deployment of Intelligent Transportation Systems (ITS) during 
the last decade has brought the opportunity of using more suitable traffic data to directly 
measure travel times (Turner et al., 1998). The merging spatial travel time measurement 
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systems use fixed location equipment to automatically identify and track a subset of vehicles in 
the traffic stream. By matching the unique vehicle identifications at different reader locations, 
spatial estimates of travel times can be computed. This is the case with Automated Vehicle 
Identification (AVI) data obtained from the readings of vehicle toll tags or from video license 
plate recognition. By matching the vehicle ID at different locations on highway, link travel times 
can be directly obtained if the clocks at each location are properly synchronized.  

The concept of using AVI data from toll collection systems to directly measure highway travel 
times was first proposed by Davies et al. (1989). A large number of literatures primarily deal with 
the usage of Electronic Toll Collection (ETC) data to measure travel times. These systems 
identify the vehicles by means of on-vehicle electronic tags and roadside antennas located on 
the main highway sections. However, the basic problems of this configuration include the level 
of market penetration of the electronic toll tags, and how to deal with time periods when only 
small samples are available in order to obtain a continuous measurement of travel times (Dion 
and Rakha, 2006). 

Some additional research has also been done on the travel time measurement using the typical 
configuration of a closed toll system, which is widely extended in Europe and Asia (Ohba et al., 
1999). The concept of a closed toll system refers to the fact that the toll a particular driver pays 
varies depending on the origin and destination of his trip and is approximately proportional to 
the distance traveled on the highway. Soriguera et al. (2010) presented a new approach for 
measuring travel times on closed toll highways using the existing surveillance infrastructure. 
Since the toll plazas were located on the on/off-ramps and each vehicle was charged a 
particular fee depending on its origin and destination, the data from toll collection system were 
filtered and fused in a statistical way in order to extract the relevant itinerary travel time 
information. Their proposed method allows estimating the travel times on single sections of 
highway using itineraries covering different origin-destinations.  

Probe Vehicle Technologies 
Another approach for directly measuring travel times is to use probe vehicle technologies, which 
are capable of tracking a sample of probe vehicles as they travel within a transportation 
network. The emerging technologies include cellular geo-location, global positioning systems 
(GPS), and automatic vehicle location (AVL) systems. Those probe vehicles act as mobile traffic 
sensors equipped with tracking devices (e.g. GPS or mobile phones). They are being used to 
collect network-wide traffic information such as instantaneous speeds and travel times at any 
network location without need of roadside equipment. 

Prior research using GPS data or probe vehicle data have addressed the route inference in 
map-matching processes (Yokota & Tamagawa, 2012; Rahmani & Koutsopoulos, 2013), and 
the number of probe vehicles needed to reflect realistic traffic conditions (Srinivasan & Jovanis, 
1996; Chen & Chien, 2000). A significant body of literature focuses on model-based and data-
driven methods for estimating travel time with probe vehicle data for traffic monitoring or 
planning purposes (Zheng & Van Zuylen, 2013). 

A mathematical model by Jula et al. (2008) estimates link travel times and arrival times at nodes 
on a real-time, stochastic network. Hellinga et al. (2008) proposed an analytical model to 
decompose partial link or route travel time from probe vehicle into individual link travel times 
along urban arterials utilizing the real traffic conditions on arterial network. Their evaluation 
suggested that the proposed method outperformed the benchmark (deterministic) method. 
Based on data collected from highly frequent GPS readings, Westgate et al. (2013) proposed a 
Bayesian model to estimate the distribution of ambulance travel times on road segments in 
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Toronto. Their methods can provide additional support information such as the probability an 
ambulance will reach its destination within a certain time threshold. 

Different from the conventional loop detector data, probe vehicle data does not provide direct 
information about flow, density, and average speeds that are usually the inputs for analytical 
models. Instead, people use data-driven methods for travel time estimation. The existing data-
driven methods include regression models (Chan et al., 2009) and neural network based 
models. Zheng and Van Zuylen (2013) proposed a three-layer neural network model to estimate 
link travel times for individual probe vehicles. The results with simulated data suggest their 
model can outperform the analytical model. However, the many required parameters associated 
with those models limit their applicability in practice. 

Instead of exclusively utilizing probe vehicle data, Bhaskar et al. (2009) proposed a model to 
incorporate probe vehicle data into traditional cumulative plots in order to estimate the average 
travel times on signalized urban network. Zhang and Rice used data from both probe vehicles 
and double loop detectors to develop a linear model for travel time prediction on freeways 
(Zhang & Rice, 2003). To address the issue of sparse truck GPS data available, Morgul et al. 
(2013) presented an empirical method for truck travel time estimation by using taxi GPS data to 
supplement the limited truck GPS data on the Manhattan network. Their results indicated that 
the taxi GPS data supplemented the sparse truck data well. A summary of other relevant 
literature using GPS-based probe vehicle data for traffic monitoring or transportation planning 
purposes is also provided by Morgul et al., as shown in Table 1. 

Table 1: Literature using GPS-Based Probe Vehicle Data (Source: Morgul et al., 2013) 

Authors Year Data Size 
Traffic Monitoring 
Zou et al. 2005 100 taxis 
Brockfield et al. 2007 700 taxis 
Lahrmann 2007 1 month taxi-GPS data, 10 taxis 
Liu et al. (14) 2008 4000 taxis 
Sananmongkhonchai et al. 2008 1 month taxi-GPS data, 4000 taxis 
Hunter et al. 2009 2 months taxi-GPS data, 50 taxis 
Li et al. 2009 57 days taxi-GPS data, 7000 taxis 
Liu et al. 2009 6 months taxi-GPs data, 249 taxis 
Herring et al. 2010 3 months taxi-GPS data, 500 taxis 
Yuan et al. 2010 3 months taxi-GPS data, 33000 taxis 
Ehmke et al. 2012 2 years taxi-GPS data 
Miwa et al. 2012 6 months taxi-GPS data, 1500 taxis 
Yokota and Tamagawa 2012 1 month truck-GPS, 300 trucks 
Transportation Planning 
Li et al. 2009 57 days taxi-GPS data, 7000 taxis 
Uno et al. 2009 10 day bus-GPS data, 100 buses 
Kinuta et al. 2010 6 months taxi-GPS, 1 month truck-

GPS, 70 taxis, 130 trucks 
Munehiro et al. 2012 1 year taxi-GPS data, 115 taxis 
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Methodology 
In this chapter, two methods are presented to estimate the link travel times on a network using 
truck tracking GPS data: one is the naïve method for truck speed analysis on individual links; 
the other is the network method that maps the recorded trip travel times onto a link time matrix 
using the least squares method (LSM). The motivation of application here is for link 
performance analysis on freight corridors using truck GPS data. 

Naïve Method Using Speed Analysis 
This method computes the travel time on each link individually, as summarized below. 

1. Identify the GPS records falling onto a single link along each truck’s travel trajectory. 

2. Calculate the truck speed between two consecutive GPS records by dividing the traveled 
link length by the recorded time interval. 

3. Group all resulting speeds traversing each link for each time period to get the mean 
speed using !",$ =

&'
(',)

, where !",$ denotes the estimated travel time on link a at time 

period k, *" denotes the roadway length for link a, and +",$ denotes the statistical speed 
estimate (e.g. mean speed) on link a at time period k.   

Note that this way may also give rise to the median and standard deviation of the speeds for a 
particular link. However, this method is rough because two consecutive GPS records may cover 
a portion of two or more links. In the naïve method, we choose not to use the time intervals that 
correspond to three or more road links for which the travel time is estimated. 

This naïve method can easily identify the extreme speed records (due to noises or technical 
errors) compared with the posted link speed limits. Besides, the temporal speed variation on 
each link can be used for travel time reliability analysis. There are several disadvantages of the 
naïve method. First, the sparse truck GPS data may lead to only a small sample of intra-link trip 
records, thus affect the statistical estimate of truck speed/travel time on a single link. Second, by 
ignoring the records of long time intervals, a chance for improving the time estimation is missed. 
In contrast, the second method, network mapping method, which we are presenting next, uses 
all the trip records including those of large time intervals and covering three or more links. The 
numerical tests also confirm that the network mapping method provides better estimates of link 
travel time. 

Mapping Method Using Trip Travel Times 
Considering the recorded travel time for a particular trip as the sum of the travel times on the 
links comprising this trip, a mapping relationship is presented as follows. 

,- = .-,"!"
"

 

where ,- denotes the recorded travel time of truck trip i, !" denotes the travel time on link a,  .-,"	 
is the fraction of the total length of link a traversed in trip i. 0 ≤ 	.-," ≤ 1, .-," = 1 if link a is fully 
on trip i, and .-," = 0 if link a is not traversed by trip i.   

Here, we use the term trip to mean sequential GPS records denoting location and time stamps 
for start and end points. If the GPS record interval is 15 minutes, for example, then each 15 
minute interval is a trip in this study. A trip must include both start and end stamps.  We only 
consider ‘elementary’ trips for use in this study; for example, three consecutive GPS points form 
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two elementary trips. However, if the consecutive elementary trips are along one link then for 
convenience, we create a single trip using the first and the last records of the sequence. 

Let P be the incidence matrix with elements .-,". Typically, the number of rows in this incidence 
matrix equals the number of trips, and the number of columns equals the number of links on the 
study network. Using vector operation, the mapping can be written in matrix notation as: 

3 = 45 

However, as a practical challenge, the positions of trucks within the beginning and ending links 
are randomly distributed in the GPS data. Travel times collected by GPS may partially cover the 
beginning and ending links. Technical preprocessing is needed to deal with this ‘end’ effect. We 
use 0 < 	.-," < 1 to record partial link coverage. 

For example, Figure 1 shows three trips reported from truck GPS device along three links. For 
trip (a), the first GPS point corresponds to a distance equal to 1/4 of Link 1, the second GPS 
point corresponds to the 3/4 distance on Link 1. For trip (b), the first GPS point is at 1/3 length of 
Link 1, the second GPS point is at 3/4 length of Link 2. We will explain trip (c) later in this 
example.  

 

 
Figure 1: Illustration of Recorded Truck Trips 

 
In the preprocessing, we assume the travel time on an individual link is proportional to the 
covered distance on that link. For example, since trip (a) in Figure 1 covers half the length of 
Link 1, the trip time is half the required travel time to traverse Link 1 and nothing else. We can 
use GIS tools to measure the proportional distances along cartographic representations of 
roadway links. When there are many trips, the amount of work for this preprocessing is non-
trivial. 

We can generate the following incidence matrix, P, to map the relationship between the trips 
and links in Figure 1: 

7 =
1/2 0 0
2/3 3/4 0
1/2 1 1/4

 

where the columns correspond to Links 1, 2 and 3, and the rows correspond to the trips (a), (b), 
and (c). The third row indicates that for trip (c), the first GPS point occurs at the 1/2 point on Link 
1 and the second GPS point occurs at 1/4 point on Link 3. The 1 in element (3, 2) indicates the 
truck traveled the entire length of Link 2. 
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Then, the model formulation for estimating of link travel times using the above mapping 
relationship is proposed as follows. 

Objective function: To minimize the total difference between the recorded trip times and the 
estimated trip times for all trips. 

Assumption: The truck travel time on an individual link is proportional to the covered traveled 
distance on that link. This assumption also implies that each link has consistent traffic condition 
and sufficient truck GPS records. 

Notations 
Set 
• A: link set 

• I:  trip set 

Parameters 

• !"< free flow travel time to traverse link a 

• ,- observed travel time on trip i 

• .-," elements comprising the incidence matrix P 

Variables 

• !" estimated travel time on link a 

• =- estimated travel time for trip i 

Model formulation: 
Minimize  

=- − ,-
?

-∈A

 

 

Subject to 

																																																							 .-,"!"
"∈B

= =-													C ∈ D																																																											(1) 

   

 																																																														!" ≥ !"
<															H ∈ I																																																												(2) 

 
The constraint (1) represents the mapping relationship between trip times and link travel times, 
and the constraint (2) represents the minimum free flow travel time restrictions. With sufficient 
trip records across the study network, the link travel times can be estimated simultaneously 
using least squares method (LSM) to minimize the sum of squared errors between the given 
itinerary travel times and estimated itinerary times. Considering link travel time must be no less 
than the free flow travel time, we solve the LSM with bound constraints by coding in MATLAB. 
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Case Study of San Antonio Corridor Network 

Truck Data 
The truck tracking GPS data used in this study is from the American Transportation Research 
Institute (ATRI) data collected in March 2009 along highway I-35 from Laredo to San Marcos, 
Texas. It covers a major freight corridor in the Southwest Texas, as illustrated in Figure 2. This 
corridor carries a significant volume of freight for trade with Mexico, and also connects several 
major metropolitan areas such as Austin and San Antonio. The raw data include unique truck 
ID, the longitude and latitude position, and the time stamp when the location of truck is 
recorded. Participating trucks record their GPS information (both location and time) at different 
time intervals (e.g., 1, 3, 5 minutes, etc.) after their engines are turned on until the travel stops. 
The overall temporal distribution of collected truck GPS data during March 2009 are displayed in 
Figure 3 and Figure 4. 

Our pilot study finds that the highway corridor close to San Antonio metro area has varying 
speeds/travel times with time of day, and truck travel time varies significantly along I-35 and the 
alternative route, highway loop I-410 across the San Antonio metropolitan area. Here, we focus 
on the San Antonio corridor network as shown in Figure 5. The San Antonio network is chosen 
also because of the overlapping itineraries recorded via GPS that make it an ideal application of 
the mapping method that we propose. Those periodical truck GPS records can be used to 
estimate the link travel times across the San Antonio network. 

 
Figure 2: Scope of Freight Corridor in the Southwest Texas 
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Figure 3: Distribution of Texas GPS data during March 2009 by hour 

 

 
Figure 4: Distribution of Texas GPS data during March 2009 by day 
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Figure 5: Study Corridors Highlighted on the San Antonio Network 

Data Preprocessing 
The raw GPS data contained records of time and location for fueling, local deliveries and 
pickups and related activities off the highway corridor. Data preprocessing removed the records 
for positions falling outside the mainline highway. The filter procedure is as follows. 

1. Group truck data by their ID and recording time. 

2. Use ArcGIS geo-processing tool to identify data points not falling onto highway mainline. 
Remove the records for travel not on the highway with ArcGIS. 

3. Detect the outlier GPS records using Chauvenet’s criterion (Barnett & Lewis, 1994). The 
criterion was applied for speed measurements along a single link during one time period. 

Chauvenet’s criterion is a statistical means widely used for detecting outliers in measurement 
data. Given a sample of N data points, the criterion states that data points can be considered for 
rejection as outlier only if the probability of obtaining their deviation from the mean is less than 
1/(2N). By following this procedure, the raw GPS data can be filtered for use in the link travel 
time estimation. 

Link Travel Time Estimation with Two Methods 
In the case study on San Antonio corridor network, we choose to only focus on the GPS records 
traveling northbound. Sections of I-35, I-37, I-10 and I-410 on the study network were divided 
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into links based on their conjunction with other major roadways. Accordingly, I-35 comprises five 
links (351 to 355), I-410 section 1 comprises four links (411 to 414), I-410 section 2 comprises 
six links (421 to 426), I-10 comprises three links (101 to 103), and I-37 comprises two links (371 
and 372). The link numbering sequence along each highway section increases in the 
northbound direction. A summary of the link lengths and free-flow travel times is presented in 
Table 2. 

To compare the travel time estimates using the two methods, we used the truck trip records 
during the afternoon peak hours from 5pm to 7pm. There are 231 trucks (unique truck IDs) with 
nearly 2,000 filtered GPS data points during this period. For the naïve method, we code in 
ArcGIS to aggregate all the speed results obtained from data points falling onto a single link. In 
this way, consecutive GPS records covering multiple links are ignored. Then we computed a 
statistical summary of the truck speed on each link (i.e., mean, median, standard deviation, and 
percentile). 

For the mapping method using the least squares method, we developed the incidence matrix as 
explained earlier by coding in ArcGIS and MATLAB. This mapping method uses more valid trip 
data (i.e., inter-link trip data) compared with the naïve method. Table 3 compares the numbers 
of valid data points used in the two methods. 

We compare the link travel time estimates obtained from the two methods in Table 2. As shown, 
the naïve estimates are found by dividing the link lengths on the mean speeds. The mapping 
estimates consider both intra- and inter-link trips.  

It can be seen that generally the estimates from the two methods are very close. However the 
estimated travel time from the naïve method for link 425 deviates from the mapping estimate by 
nearly 20 percent. This is due to a very small sample of available intra-link truck trips (only 31 
trip records) falling on link 425 during this period. Therefore, the resulting travel time estimate 
for link 425 with naïve method would be inaccurate in this case, which also implies the limitation 
of naïve method to deal with sparse GPS data.  

Both methods are capable of generating reasonable travel time estimates for links 355, 426, 
103 and 371 with recurrent heavy traffic during the afternoon peak. For these links the free flow 
travel time is significantly less than the estimated travel times using observed data. Those links 
conjunct with another highway section or connect the dense roadways in downtown San 
Antonio. The detailed truck speed distribution obtained from the naïve method along those links 
during four aggregated daily periods (AM Peak: 7:00-9:00, Noon: 11:00-13:00, PM Peak: 17:00-
19:00, Midnight: 22:00-24:00) are also displayed in Figures 6 and 7. 

Table 2: Link Travel Time Estimates with Two Methods for Trips during 5-7 PM 

 Link No. Length 
(miles) 

Free-flow 
Travel Time 

(sec) 

Naïve 
Estimate 

(sec) 

Mapping 

Estimate 
(sec) 

I-35 Section 

351 4.2 228 265 271 

352 3.8 210 290 284 

353 2.5 138 156 151 

354 1.8 90 96 109 
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355 4.0 216 388 407 

I-410 Section 1 

411 7.3 402 416 422 

412 9.3 510 550 515 

413 4.5 246 335 331 

414 4.9 270 319 307 

I-410 Section 2 

421 3.2 174 201 188 

422 4.6 252 317 326 

423 3.7 204 287 304 

424 4.9 270 319 325 

425 3.2 174 275 340 

426 2.7 150 349 351 

I-10 Section 

101 2.0 108 184 189 

102 2.3 126 214 215 

103 3.6 198 334 343 

I-37 Section 
371 3.1 174 378 403 

372 5.8 324 391 381 

 
Table 3: Summary of Valid Data Points in Two Methods 

 Trip Records Used 

Naïve Method 1361 

Mapping Method 1854 
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Figure 6: Mean Speed Distribution on the Links with Recurrent Heavy Traffic 

 

 
Figure 7: Standard Deviation of Speed on the Links with Recurrent Heavy Traffic 

The specific statistical summary of speed distribution during four aggregated periods on these 
four links with recurrent heavy traffic is listed in Table 4. 
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Table 4: Statistical Summary on Four Links with Recurrent Heavy Traffic 

 
Period 

Mean 

(mph) 

Median 

(mph) 

Std Dev 

(mph) 

Link 355 

1 45.78 49.76 9.18 

2 57.42 55.27 7.81 

3 37.15 33.41 9.67 

4 58.60 62.45 5.20 

Link 426 

1 40.41 46.43 10.16 

2 60.37 58.60 6.49 

3 27.84 35.01 11.40 

4 58.96 60.36 6.06 

Link 103 

1 43.03 46.74 11.04 

2 45.03 50.28 7.87 

3 38.78 42.80 10.94 

4 55.17 59.72 6.48 

Link 371 

1 52.40 45.14 8.79 

2 53.01 54.54 6.51 

3 30.34 37.14 13.09 

4 59.55 56.39 6.64 

 

We further test the applicability of the mapping method with simulated data from the calibrated 
highway corridor in the Milwaukee, Wisconsin area in next chapter. 

 



24 
 

Simulation Test 
To validate and evaluate the proposed estimation methods, a simulation framework for a 
highway corridor in the Milwaukee, Wisconsin area was developed using VISSIM. As shown in 
Figure 8, the Milwaukee corridor network in the simulation framework includes sections of I-94 
and I-894. This corridor starts from County Highway BB to West Loomis Road. It is calibrated 
with the two-hour loop detector data on the eastbound sections of the highway and ramps 
during the peak-hour period from 4 to 6 PM on March 6, 2009, which contain the traffic volume 
and average travel speed on each detector point in 15-minute intervals. The locations of the 
data detectors are indicated at the round green points in Figure 8. The three study links for the 
test are selected and shown in Figure 8 with red stars indicating the start and end points. The 
link lengths and free flow travel times are listed in Table 5. This simulation framework generates 
the eastbound vehicle travel trips for the two-hour period. We tested the methods using data for 
the second-hour trips. 

 

 
Figure 8: Scope of Highway Corridor and Illustration of Study Links in Milwaukee, WI 

 
Table 5: Link Information along Test Corridor 

 Length (miles) Free-Flow Time 
(sec) Ground Truth (sec) 

Link 1 7.5 387 639 

Link 2 3.5 178 901 

Link 3 4.8 245 472 
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The travel time distribution for the vehicles passing through each of the three study links are 
shown in Figures 9-11. Notice that although Link 2 is the shortest link of all three links, it has the 
longest average travel time to pass through. 

 

 
Figure 9: Travel Time Distribution for the Vehicles Passing Through Link 1 

 

 
Figure 10: Travel Time Distribution for the Vehicles Passing Through Link 2 
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Figure 11: Travel Time Distribution for the Vehicles Passing Through Link 3 

 

For each test, we extract a sample of the vehicle trips along the corridor, and randomly select 
from the position and time records along the study corridor for each vehicle so that we have 
sparse and non-uniform position and time records for the vehicle trips, such as the example 
shown in Figure 12. It is worth noting the significant decrease in speeds between points 7 and 
12 due to the traffic merging from the ramps. Hence, the density of the recording points on this 
part of highway is set to be higher than others. The tested data simulates the realistic situation 
where the probe vehicles report travel information that is randomly distributed.  

 

 
Figure 12: Locations of Those Recording Points along the Test Corridor 
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The distribution of the number of records collected from each of the data collection point is 
shown in Figure 13. The number of records collected from data collection point 11 is 
significantly less than all the other data collection points since it is on the collector ramp that 
connects from eastbound I-94 to southbound I-894.  

 

 
Figure 13: Distribution of Records in the Second Hour Collected by Each Data Collection Point  

 

We applied both the naïve and mapping methods to the sampled vehicle trips to estimate the 
link travel times. To compare the estimation accuracy of the methods, we tested several cases 
with varying sample sizes. The ground truth values of link travel times were obtained from the 
population of nearly 4500 vehicle trips in total, and we tested samples representing 70, 40, and 
10 percent of the trips. For each case, we computed the relative gap between the estimated link 
travel time and the ground truth value as a measure of accuracy. 

Results of the accuracy tests are shown in Table 6. The estimated travel times from the 
mapping method are more accurate (with smaller gaps) than the estimates from naïve method. 
The naïve estimates deviate from the ground truth values by more than 20 percent when the 
sample accounts for only 10 percent of the population, while the mapping method estimates are 
within 10 percent. These results indicated the proposed network mapping method is promising 
for future practical applications. 

 
Table 6: Link Travel Time Estimates with Two Methods for Simulation Trips 

Test 
Sample (%) Link No. 

Naïve Method Mapping Method 

Estimate (sec) Gap Estimate (sec) Gap 

70 1 589 7.8% 615 3.7% 
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2 827 8.2% 846 6.1% 

3 429 9.1% 500 5.9% 

40 

1 570 10.8% 591 7.5% 

2 1001 11.2% 937 4.0% 

3 373 21.0% 440 6.8% 

10 

1 523 18.1% 558 12.6% 

2 1086 20.6% 989 9.8% 

3 332 29.7% 412 12.7% 
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Conclusions 
The link travel time estimation for commercial vehicle movement is challenging for two reasons:  
limited available data and high variability of travel time due to recurrent and non-recurrent 
roadway congestion. In this project, the research team presents a method for estimating link 
travel time using limited truck GPS data. The method has potential practical application for 
analyzing the link level performance on freight corridors. 

A simple and basic method, referred to as the naïve method in this report, computes the 
average travel speed and variation on each link individually. The naïve method cannot make 
use of sparse trip data having intervals covering multiple links. The proposed mapping method 
solves for link travel times based on trip itinerary information using the least squares method. 

The research team conducts a case study of San Antonio corridor network, and applies the 
methods to estimate link travel times along the freight corridors. The results show that the 
estimates from the two methods are generally close, and both are capable of generating 
reasonable travel time estimates even for links with recurrent heavy traffic. The naïve estimate 
method uses less of the available data in a sparse data set than the mapping method. As a 
result the naïve method may yield estimates that are less accurate than the mapping method. 
The authors further test the methods with simulation data from a calibrated highway corridor in 
the Milwaukee, Wisconsin area. The test results show that for varying sample sizes the 
estimates with mapping method are more accurate than those with naïve method.  

While the network mapping method appears to be a promising tool for future practical 
application on freight corridors, much remains to be addressed. For example, can we use small 
sample data to ensure reliable travel time estimate? What is the minimum size of data for 
reliable estimates? Can we estimate link travel times that vary over the time of study period? 
The authors will make efforts to address those issues as future research directions. 
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Appendix 1: Supplemental Data Analysis Results on San 
Antonio Corridor Network 
This section provides the supplemental data analysis results based on the truck GPS data 
across the San Antonio corridor network. The research team summarizes the daily temporal 
speed distributions, the frequency of speed results, and also the percentile distributions along 
various highway sections. 

 
Figure 14: Temporal Speed Distribution along I-35 Section 

 

 
Figure 15: Temporal Speed Distribution along I-410 Section 1 
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Figure 16: Temporal Speed Distribution along I-410 Section 2 

 

 
Figure 17: Temporal Speed Distribution along I-10 Section 

 

We also analyze the variance and other statistical features of truck speed along major highway 
corridors across the San Antonio metro area, in order to illustrate the freight corridor travel time 
reliability as well as to assist the travel decisions for trucks. 
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Figure 18: Frequencies and Percentiles Distribution along I-410 Section 1 
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Figure 19: Frequencies and Percentiles Distribution along I-410 Section 2 
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Figure 20: Frequencies and Percentiles Distribution along I-35 Section 
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Figure 21: Frequencies and Percentiles Distribution along I-10 Section 
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Figure 22: Frequencies and Percentiles Distribution along I-37 Section 
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Appendix 2: Data Analysis on Hudson-Beloit Corridor in WI 
The objective of this section is to process and analyze the truck GPS data along the corridor 
from Hudson to Beloit, Wisconsin. This American Transportation Research Institute (ATRI) data 
is also collected in March 2009. The majority of this corridor carries over 8,500 trucks per day. 
Similar to the processing of Texas truck GPS data, we analyze the statistical summary of 
collected data, and detect the outlier points based on travel speed results. The research team 
demonstrates that it is necessary to apply the outlier detection to filter the truck GPS data for 
further use of travel time estimation. 

 
Figure 23: Scope of Corridor from Hudson to Beloit, WI 
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Figure 24: Distribution of Time Interval between Consecutive Records 

 

 
Figure 25: Distribution of Truck Trips by Hour
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Figure 26: Numbers of Trucks Traversing Each Segment 

 
Figure 27: Truck Mean Speed on Each Segment 
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Figure 28: Standard Deviation of Speed on Each Segment 

 
Figure 29: Distribution of Speed in Each Hour
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Considering a truck trip may experience non-traffic related stops, such as fueling on a trip, the 
estimation of travel speed will be biased without identifying and removing such trips. After the 
outlier detection by comparing the travel speed of a trip with other trips on the same segment 
and within same period, we summarize the detected outlier distribution in Tables 7 and 8. The 
according travel speed distribution over the corridor after removing outliers are also displayed in 
Figures 30-33. 

Table 7: Distribution of Outliers by Hour 

Hour Number of Trips Number of Outliers Percentage 

0 4815 156 3.24% 

1 4018 129 3.21% 

2 3429 122 3.56% 

3 2574 97 3.77% 

4 2180 91 4.17% 

5 2114 88 4.16% 

6 2059 105 5.10% 

7 1805 76 4.21% 

8 1661 80 4.82% 

9 1865 91 4.88% 

10 2165 111 5.13% 

11 2393 126 5.27% 

12 2741 112 4.09% 

13 3226 134 4.15% 

14 3722 160 4.30% 

15 4233 187 4.42% 

16 4844 187 3.86% 

17 4927 173 3.51% 

18 5372 190 3.54% 

19 5916 203 3.43% 
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20 6445 170 2.64% 

21 6391 185 2.89% 

22 5737 149 2.60% 

23 5067 170 3.36% 

	
Table 8: Distribution of Outliers by Day 

Day Number of Trips Number of Outliers Percentage 

1 2501 116 4.64% 

2 5767 214 3.71% 

3 6057 228 3.76% 

4 6056 182 3.01% 

5 5391 198 3.67% 

6 4976 176 3.54% 

7 1539 63 4.09% 

8 10 3 30.00% 

9 20 1 5.00% 

10 15 2 13.33% 

11 14 0 0.00% 

12 15 0 0.00% 

13 20 0 0.00% 

14 9 0 0.00% 

15 29 0 0.00% 

16 36 1 2.78% 

17 32 3 9.38% 

18 1726 43 2.49% 

19 4710 172 3.65% 
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20 4488 177 3.94% 

21 2891 107 3.70% 

22 2145 101 4.71% 

23 5178 187 3.61% 

24 5665 210 3.71% 

25 5078 181 3.56% 

26 5345 171 3.20% 

27 4564 184 4.03% 

28 2969 111 3.74% 

29 2182 97 4.45% 

30 4784 185 3.87% 

31 5487 179 3.26% 
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Figure 30: Numbers of Trucks Traversing Each Segment after Removing Outliers 

 
Figure 31: Truck Mean Speed on Each Segment after Removing Outliers 
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Figure 32: Standard Deviation of Speed by Segment after Removing Outliers 

 
Figure 33: Distribution of Speed in Each Hour after Removing Outliers
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