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EXECUTIVE SUMMARY 

Introduction 

The nation's transportation systems face disruptions of various sorts. Besides disastrous events, the 
surface transportation networks are subject to other more frequent incidents, including crashes, 
disabled vehicles and ever-increasing highway construction/maintenance. Meanwhile, climate 
change is projected to produce more extreme weather conditions, which are to threaten the 
reliability of the system in an unprecedented extent. Data from Federal Highway Administration 
(FHWA) suggest that disruptions already account for 50-60% of congestion delay in most 
metropolitan areas and the percentage is even higher in smaller urban areas. Travel time reliability 
has become an increasing concern of the network users – particularly so for freight carriers, which 
may lose revenue when unexpected delays strike their supply chains and disrupt just-in-time 
delivery. The lack of reliability often forces them to choose between running the risk of being late 
or budgeting a large buffer time, of which much is usually wasted. Therefore, network users are in 
great need of route guidance that properly weighs in the uncertainty of travel times and inform 
them about the reliability of their routing decisions. Such guidance should also take into 
consideration the fact that drivers are usually risk-averse in the sense that, given two paths with 
the same average travel time, they prefer the path with less variability. On the other hand, 
transportation contributes roughly 28 percent of the United States’ total greenhouse gas (GHG) 
emissions, and between 1990 and 2006 the growth in transportation GHG emissions represented 
almost 50% of the total growth in U.S. GHG emissions. It is therefore clear that any strategy to 
reduce significantly the country’s GHG emissions must include mechanisms and incentives to 
control emissions resulting from transportation.  

The goal of this research is to develop and evaluate routing models for efficient transportation that 
(i) aim to reduce travel time, (ii) provide reliable paths against disruptions, and (iii) factor in the 
emissions resulting from a given path. Specifically, the freight vehicle routing problem in this 
research is investigated in three aspects.  The first investigation (Chapter 3) considers risk averse 
freight routing problems, in which traffic conditions are treated with uncertainty (e.g., uncertain 
travel time or speed) and as such truck drivers are assumed as risk-averse; that is, they always 
prefer the expectation of a random return to the random return itself.  In this research context, a 
random return is the random travel time itself.  The second investigation (Chapter 4) incorporates 
microscopic vehicle operating features in an eco-routing problem.  And the third investigation 
(Chapter 5) attempts to fill the literature gap by investigating the more realistic sustainable vehicle 
routing strategies by considering the joint effect of commercial vehicle load and speed on energy 
consumption or pollutant emissions or both.   

Part I: Risk Averse Freight Routing Problem 

This study aims to incorporate environmental measures, especially the cost of greenhouse gas 
(GHG) emissions, into a reliable freight routing model. GHG emission rates are generated from 
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Motor Vehicle Emission Simulator (MOVES) model and approximated as a function of the 
average link travel speed.  To model uncertainty, the link travel speed is treated as a discrete 
random variable with a given distribution. Freight carriers are assumed to be risk-averse, which 
is captured by the second order stochastic dominance (SSD) relationship. The reliable freight 
routing model is formulated as an integer program that can be easily tailored to a variety of 
modelling preferences. The study experiments with eight variants of the base model, each 
corresponding to a different trade-off strategy between the three objectives, namely, efficiency, 
reliability and emission cost. The main findings from the numerical experiments are (1) modelling 
emission as a constraint seems more appealing due to the difficulty of estimating monetary value 
of emission cost; (2) the feasible set, hence the optimal solution, depends on the type of SSD 
constraints (time or emission), as well as the choice of the benchmark; and (3) avoiding risks in 
the SSD sense could increase the total cost by up to 20% in a real network. 

Part II: Eco-Routing Considering Microscopic Vehicle Operating Conditions 

The eco-routing problem concerned in this study addresses the optimal route choice of eco-
drivers who aim to meet an emission standard imposed by regulators, while trying to find the path 
with minimum total operating cost, which consists of both travel time and fuel costs. The study 
first develops fuel consumption and greenhouse emission estimation models that link emission 
rates to vehicle’s physical and operational properties. Unlike most studies in the literature, the 
emission model developed in this study retains as many microscopic characteristics as feasible in 
the context of route planning. Specifically, it is able to approximate the impacts of major 
acceleration events associated with link changes and intersection idling, and yet does not require 
detailed acceleration data as inputs. The proposed eco-routing model explicitly captures delays at 
intersections and the emissions associated with them. Using a simple probabilistic model, the 
impacts of different turning movements on eco-routing are also incorporated. The proposed model 
is formulated as a constrained shortest path problem and solved by off-the-shelf solvers. 
Numerical experiments confirm that ignoring the effects of turning movements and acceleration 
may lead to sub-optimal routes for eco-drivers. The results also suggest that vehicle characteristics, 
especially weight and engine displacement, may influence eco-routing. 

Part III: Eco-Routing Considering the Joint Effect of Cargo Weight and Vehicle Speed 

Traditional (sustainable) VRP literature typically treats all stops equally in routing.  In other words, 
routing is affected only by link/arc properties and node properties do not influence the link/arc 
properties.  This treatment works reasonably well in passenger vehicle VRP, however, it does not 
apply to urban commercial vehicle routing when loading and unloading activities are performance 
at customer points (nodes).  This study attempts to fill the literature gap by investigating the more 
realistic sustainable vehicle routing strategies by considering the joint effect of commercial vehicle 
load and speed on energy consumption or pollutant emissions or both.  Moreover, idling energy 
consumption and emissions at stops (due to loading and unloading at the customer’s) will also be 
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incorporated in the optimal routing strategies.  Specifically, this study presents the preliminary 
investigation towards filling that gap.  Using a numerical example, this study has demonstrated the 
noticeable (joint) effects of vehicle payload, vehicle speed, and dwell time on urban commercial 
vehicle PM2.5 emissions and energy consumption.  Thus vehicle payload and speed could affect 
the visiting order of a distribution tour if minimizing the energy consumption or emissions is the 
objective.   

Major Findings and Policy Implications 

• The risk-averse freight routing model proposed in this study explore incorporates 
environmental measures and reliability concerns into freight routing models. Various 
strategies to trade-off efficiency, reliability and sustainability in the context of freight routing 
are explored in this research, including sensitivity analysis and incorporating the emission 
cost as a constraint.  A notable feature of the proposed modeling framework has to do with 
how it addresses uncertainty. By assuming decision makers are risk-averse, the proposed 
models capture their reliability concerns by introducing a second-order stochastic dominance 
(SSD) constraint on either random travel time or random emission on a path. These constraints 
narrow down the feasible set to those paths whose travel time (or emission) distribution 
stochastically dominates a benchmark distribution in the second order. The main findings from 
our numerical experiments are (1) modeling emission as a constraint seems more appealing 
due to the difficulty of estimating monetary value of emission cost; (2) the feasible set, hence 
the optimal solution, depends on constraint type (time or emission), as well as benchmark 
choice; and (3) avoiding risks in the SSD sense could increase the total cost by up to 20% in a 
real network. 

• The eco-routing model incorporating microscopic vehicle operating characteristics is able to 
approximate the impacts of major acceleration events associated with link changes and 
intersection idling.  Perhaps more important, it accomplishes this through an approximation 
scheme that obviates using detailed acceleration profile as inputs.  Moreover, the proposed 
eco-routing model explicitly captures delays at intersections and the emissions associated with 
them.  Using a simple probabilistic model, the impacts of different turning movements on eco-
routing are also incorporated. The main findings from these experiments are summarized below: 
a) Vehicle characteristics seem to influence path choice. Thus, the eco-routing model 

developed in this study is of practical importance because it is able to differentiate vehicle 
types. 

b) Incorporating turning movements and acceleration has significant impacts on eco-routing. 
Conventional models that simply ignore these microscopic vehicle operating conditions 
may provide sub- optimal route guidance to eco-drivers. 

• This research has also demonstrated the noticeable (joint) effects of vehicle payload, vehicle 
speed, and dwell time on urban commercial vehicle emissions and energy consumption. For 
example, heavier vehicles with larger initial payloads can benefit more from the sustainable 
routing strategies which incorporate the effect of vehicle weight, and low speeds have the 
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greater impact than high speeds, causing higher energy consumption and emissions. The 
analysis results have indicated that the vehicle payload and speed could affect the visiting order 
of a distribution tour if minimizing the energy consumption or emissions is the objective. Idling 
energy consumption/emissions at stops, although considerably low compared to on-road energy 
consumption/emissions, may not be ignored especially in congested urban areas where 
customer density is high with large drop-off/ pick-up cargo weights and other special 
requirements are in place at the customer's (e.g., engine on to operate the refrigerator).  
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1. INTRODUCTION 
The nation's transportation systems face disruptions of various sorts. Besides disastrous events, the 
surface transportation networks are subject to other more frequent incidents, including crashes, 
disabled vehicles and ever-increasing highway construction/maintenance. Meanwhile, climate 
change is projected to produce more extreme weather conditions, which are to threaten the 
reliability of the system in an unprecedented extent. Data from Federal Highway Administration 
(FHWA) suggest that disruptions already account for 50-60% of congestion delay in most 
metropolitan areas and the percentage is even higher in smaller urban areas (Farradyne 2000). 
Travel time reliability has become an increasing concern of the network users – particularly so for 
freight carriers, which may lose revenue when unexpected delays strike their supply chains and 
disrupt just-in-time delivery. The lack of reliability often forces them to choose between running 
the risk of being late or budgeting a large buffer time, of which much is usually wasted. Therefore, 
network users are in great need of route guidance that properly weighs in the uncertainty of travel 
times and inform them about the reliability of their routing decisions. Such guidance should also 
take into consideration the fact that drivers are usually risk-averse in the sense that, given two 
paths with the same average travel time, they prefer the path with less variability  

The discussion on improving transportation, however, cannot be restricted to simply finding 
reliable routes. In the current context of climate change, it is imperative that sustainability issues 
be taken into account. For example, transportation contributes roughly 28 percent of the United 
States’ total greenhouse gas (GHG) emissions, and between 1990 and 2006 the growth in 
transportation GHG emissions represented almost 50% of the total growth in U.S. GHG emissions 
(Cambridge Systematics 2009). It is therefore clear that any strategy to reduce significantly the 
country’s GHG emissions must include mechanisms and incentives to control emissions resulting 
from transportation. On the other hand, it is important to notice that the objective of controlling 
emissions conflicts with minimizing travel time, as it has been shown that high vehicular speeds 
lead to higher emissions (Frey et al. 2003). Well-established traffic simulation models such as 
MOVES (US Environmental Protection Agency 2010) can accurately estimate emissions based on 
average vehicle speed and power.  

In summary, routing models for efficient transportation must (i) aim to reduce travel time, (ii) 
provide reliable paths against disruptions, and (iii) factor in the emissions resulting from a given 
path. The goal of the research is to develop, implement and evaluate such models.  Specifically, 
the freight vehicle routing problem in this research is investigated in three aspects.  The first 
investigation (Chapter 3) considers risk averse freight routing problems, in which traffic conditions 
are treated with uncertainty (e.g., uncertain travel time or speed) and as such truck drivers are 
assumed as risk-averse; that is, they always prefer the expectation of a random return to the random 
return itself (Nagurney 2000).  In this research context, a random return is the random travel time 
itself.  The second investigation (Chapter 4) incorporates microscopic vehicle operating features 
in an eco-routing problem.  And the third investigation (Chapter 5) attempts to fill the literature 
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gap by investigating the more realistic sustainable vehicle routing strategies by considering the 
joint effect of commercial vehicle load and speed on energy consumption or pollutant emissions 
or both.   
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2. LITERATURE REVIEW ON SUSTAINABLE VEHICLE ROUTING 
Transportation consumes over 27% of all energy, of which 98% comes from petroleum use. 
Transportation also contributes roughly 28% of the United States total greenhouse gas (GHG) 
emissions. Indeed, the freight sector, especially the trucking industry, has become a major source 
of greenhouse gas emissions (GHGs) within transportation. The US Environmental Protection 
Agency (EPA) reports that the transportation sector contributes to 28% of U.S. GHGs in 2005, of 
which freight trucks account for 19.1% or 385.1 Tg CO2 equivalents (Davies and Facanha 2007). 
Even worse, the environmental impacts of the trucking industry seem to have increased at a greater 
pace compared to other sectors. The GHGs from freight trucks have increased about 69% from 
1990 to 2005. During the same period, the contributions of light-duty vehicles to GHGs only 
increased by 23% (Davies and Facanha 2007). An official White House Memorandum 1 proclaims 
that GHGs emissions from medium-duty and heavy-duty trucks and buses will be regulated by the 
federal government for the first time beginning in model year 2014. With such regulations in place, 
tougher carbon standards that target excessive emissions from irresponsible operation practice 
seem within the realm of possibility.  

In urban areas in the U.S., good movements account for 24% of total transportation energy 
consumption, 30% of the total vehicle miles traveled (VMT) and 20-50% of total transportation 
emissions0. Fuel cost contributes 39% of the operating cost for the trucking industry 0. All these 
factors have led to increasing effort in the trucking industry to come up with innovative energy-
saving (and even emission-saving) vehicle routing strategies in recent years.  They have also 
motivated research interests in sustainable vehicle routing problems.  

2.1 Incorporation of Environmental Measures in Vehicle Routing Problem 
Finding optimal path for freight vehicles between an origin-destination pair in a network involves 
different types of operating costs. Many of these costs, such as fuel consumption and labor, are 
closely related to prevailing travel time in the network. Meanwhile, the cost associated with vehicle 
emissions is attracting more attention as the transport industry begins to embrace sustainability as 
a guiding principle in their day-to-day activities.  

Eguia et al. (2013) provided a detailed review on sustainable vehicle routing literature, in which 
the objective is usually to minimize the CO2 emissions or energy consumption, typically as a 
function of speed. Eguia et al. (2013) also showed that the solutions for minimizing the CO2 
emissions might be the same as that for the shortest path problem under many circumstances. 
Figliozzi (2010) developed a vehicle routing with time window (VRPTW) algorithm for reducing 
CO2 emissions and found that the proposed algorithm might provide significant emission savings 
for commercial vehicles especially in congested areas where vehicle speed was very low.  However, 

                                                
1www.ens-newswire.com/ens/may2010/2010-05-21-02.html, last visited on July 5, 2012) 
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the emission savings were not uniform because the route characteristics (e.g., speed) and other 
routing constraints (e.g., time window) affected CO2 emissions differently.  

The literature clearly indicates that minimizing travel time and emissions are sometime conflicting 
objectives, because the rates of most emissions do not change monotonically with travel speed 
(Rilett and Benedek 1994, Nagurney 2000). The best fuel economy, hence the lowest GHGs 
emission rate, usually occurs at the speed around 55 - 60 mile per hour (mpgforspeed.com, last 
accessed May 2014). Consequently, it is important to properly balance time and emission costs. 
Unfortunately, although the drivers’ wage rates may be used as a reliable surrogate for the value 
of time, estimating the cost of emission is far more difficult and controversial. Different studies 
often produce vastly different estimates, ranging from as low as 3$ per metric ton to as high as 
1600 $ per metric ton (Bishins et al. 2009).   

There are other factors that affect vehicle emissions and energy consumption in a goods 
distribution tour.  Arvidsson (2013) presented a load factor paradox in the urban distribution 
network and showed that if the truck load enforcement (i.e., minimum load mandate) was in place 
in an urban area then factor restriction is in enforcement then drivers had the tendency to have the 
heaviest goods delivered at the last stop, which had an unintended consequence of increasing the 
energy consumption and emissions compared to the same route with the reversed visiting order.  
This is because energy consumption generally increases with the vehicle load, especially for 
heavier trucks.  Gaines et al. (1983) found that the total energy consumed by idling trucks was 
more than two billion gallons per year, among which the workday idling at customer stops 
dominated the energy usage.  Therefore, the idling energy consumption and emissions should not 
be neglected in sustainable vehicle routing problems (VRPs).  

To the authors’ best knowledge, very few VRP studies in the literature have considered the effect 
of vehicle load (or in many instances the same as visiting order), nor the joint effect of vehicle load 
and speed in VRP.  Suzuki (2011) developed a VRPTW algorithm with the objective of minimizing 
the distance but also considering the energy consumption as a function of vehicle load both on the 
road links and at the customer sites.  The study found that the heavier items should be unloaded 
first and the lighter items should be unloaded later while all at the same time minimizing the 
distance.  By changing the visiting order the study showed that the new routing strategy produced 
up to 6.9% energy saving.  With the objective of minimizing energy consumption, Xiao et al. 
(2012) added the vehicle load dependent energy consumption rate to the classical capacitated 
vehicle routing problem (CVRP) and solved it with the simulated annealing algorithm.  They 
concluded that considering vehicle load in the CVRP model can reduce energy consumption by 
5%. 

In addition, the idea of integrating environmental measures into transportation assignment models 
has also gained popularity in recent years. Tzeng and Chen (1993) studied a traffic assignment 
model that simultaneously considers travel time, travel distance and CO emission. The CO 
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emission on a link is modeled as a linear function of link traffic volume. The focus is to find an 
optimal normalized weighting vector to minimize a weighted total of the three objectives. Rilett 
and Benedek (1994) considered user-equilibrium and system optimal traffic assignment models in 
which the objective is to minimize CO emissions, which is modeled as a nonlinear function of link 
speed according to TRANSYT 7-F (Penic and Upchurch 1992). They conclude that the reduction 
of travel time and CO emissions often conflict. A similar study was conducted by (Sugawara and 
Niemeier 2002), albeit their goal is to understand how much CO emissions could be reduced in an 
assignment model devoted to minimizing them. Sugawara and Niemeier (2002) calibrated the CO 
emission as a fourth-order polynomial function of travel speed, using emissions information 
developed by the California Air Resources Board. Yin and Lawphongpanich (1998) discussed 
pricing schemes that would induce network flow distribution with minimum CO emission. A bi-
level bi-objective pricing design model is proposed to trade off congestion alleviation and emission 
reduction. Ahn and Rakha (2008) examined the impacts of route choice on energy consumption 
and emission rates using GPS data. Using microscopic emission estimation models, their case 
study demonstrates that significant improvements to energy and pollutions can be achieved when 
motorists utilize a slower arterial route. Chen et al. (2011) examined a traffic assignment model 
with environmental constraints, which are imposed based on either link or area. Their study shows 
that such environmental side constraints can result in different equilibrium solutions. The studies 
cited above mainly focus on route choice and traffic assignment. Other fields, such as operations 
research, also see an elevated interest in developing environment-sensitive models (Figliozzi 2010, 
Bektas and Laporte 2011).  

2.2 Eco-Driving  
Of another particular interest to this study is driving behavior that aims at reducing fuel 
consumption and GHG emission, broadly known as Eco-Driving. Most Eco-Driving programs in 
Europe and US estimate emission improvements on the order of 5 to 15% (Onoda 2009). A recent 
study based on a sample of 20 California drivers (Boriboonsomsin et al. 2010) indicates emission 
savings of 6% and 1% on arterial streets and freeways, respectively. Most Eco-driving tips offered 
by these programs focus on microscopic operational tactics, such as maintaining a steady speed 
close to the speed limit, executing smooth deceleration, and avoiding idling. Manzie et al. (2007) 
demonstrates that mitigating stop-and-go motions by anticipating downstream traffic conditions 
could generate up to 33% fuel savings for vehicles equipped with conventional drive trains, while 
much smaller improvements are found for hybrid vehicles. 

An important aspect often overlooked in existing eco-driving practice is the impacts of route 
choice. A vehicle’s average travel speed, which is a predominant factor in determining emission, 
is highly correlated with the prevailing speed of the road on which it is operated. Once the route is 
selected, the aforementioned microscopic tactics have relatively small capacity to choose operating 
speed in favor of eco-driving. For example, it is difficult for a vehicle stuck in severe traffic 
congestion to maintain a steady and eco-friendly speed, which typically ranges between 55-60 
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miles per hour (mph) (mpgforspeed.com). To minimize emission, therefore, it seems that eco-
drivers only need to choose routes such that the average speeds on all segments are as close to the 
eco-friendly range as possible. Two issues complicate this seemingly simple strategy, however. 
First, eco-drivers may have to consider other objectives, such as travel time, in their routing 
decision. These additional objectives may be in conflict with emission minimization, as speed 
increasing beyond 60 mph is known to reduce fuel economy. This conflict between emission and 
other conventional routing objectives has been widely noticed and modeled, e.g., related studies 
in traffic assignment and route choice models (Tzeng and Chen 1993, Sugawara Rilett and 
Benedek 1994, Benedek and Rilett 1998, Nagurney 2000, Sugawara and Niemeier 2002, Yin and 
Lawphongpanich 1998, Chen et al. 2011), and related studies in operations research (Maden et al. 
2009, Kara et al. 2007, Bauer et al. 2009, Bektas and Laporte 2011). The second complication has 
to do with the fact that the average cruise speed is not the only contributing factor to vehicle 
emissions. Many other operating conditions, notably acceleration and idling also play a significant 
role. Because idling is mostly associated with waiting at intersections, the choice of turning 
movements has to be taken into account. The effects of turn penalty and prohibition on route choice 
have been noticed both in the literature (Kirby and Potts 1969, Ziliaskopoulos and Mahmassani 
1996) and in practice1. Estimating the impacts of vehicle acceleration on eco-routing is more 
challenging for two reasons. First, unlike speed, acceleration is not well correlated with road 
properties and traffic conditions. Hence, it seems difficult to estimate vehicles acceleration profile 
at the stage of route planning. Second, including acceleration in the model would make route 
decision acceleration-dependent. Yet, such a microscopic behavior as choosing acceleration is very 
difficult for the modelers to predict. On the other hand, acceleration seems to have significant 
impacts on the total emission of a route. A simulation study conducted by Ahn and Rakha (2008) 
shows that ignoring acceleration would reverse the rank of two alternative routes (a highway and 
an arterial) in terms of fuel and pollutant emissions. Yet, to the best of our knowledge, microscopic 
vehicle operating conditions such as acceleration and idling are rarely considered in route choice 
models. 
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3. Part I: Risk Averse Freight Routing Problem 

3.1 Problem Definition and Objectives 
This study aims to explore ways for properly trading off efficiency, reliability and sustainability 
in the context of freight routing. Specifically, efficiency deals with finding paths that minimize 
travel delays; reliability addresses the uncertainty in traffic conditions; and the sustainability 
component takes into account vehicle GHGs emissions when determining the best routes. To 
address uncertainty, decision makers are assumed as risk-averse; that is, they always prefer the 
expectation of a random return to the random return itself (Friedman and Savage 1948). Following 
Nie et al. (2011), we propose to capture such a behavior by introducing a second-order stochastic 
dominance (SSD) constraint on either random travel time or random emission on a path (Nie et al. 
2011).  Specifically, the constraint narrows the feasible set down to the paths whose travel time 
(or emission) distribution stochastically dominates a benchmark distribution in the second order 
(e.g., Hanoch and Levy 1969). A benchmark may be established based on a preferred path or an 
externally defined standard. Since the SSD constraint may be applied to either travel time or 
emission, another focus of the study is to compare these different modeling options. 

The rest of the chapter proceeds as follows. Section 3.2 presents modeling framework including 
the emission-speed relationship estimated from MOVES in Section 3.2.1 and several proposed 
reliable freight routing formulations with environmental measures in Section 3.2.2. Results of 
numerical experiments are reported in Section 3.3 and Section 3.4 summarizes the study and 
discusses future directions. 

3.2 Reliable Freight Routing Model with Emission Measures 

3.2.1 Emission-Speed Relationship 

For the freight routing problem concerned in this study, the predominant factor in decision making 
is prevailing link speeds, which determine the time that a freight truck needs to traverse a link, 
and accordingly, the rate of GHGs emissions as it passes through. This study adopts a macroscopic 
approach to estimate truck emissions.  Specifically, MOVES (Motor Vehicle Emission Simulator), 
the EPA’s latest mobile emission model, is employed to build the relationship between CO2 
equivalence (CO2e) and average link speed. Our proposed method first samples comprehensive 
emission rates (grams per vehicle-hour) in MOVES for the given truck type at various discrete 
speed levels. Then, a simple regression analysis is performed to fit the functional relationship. 

MOVES estimates emissions using a modal-based approach. An important feature of this 
approach is that vehicle activities are binned into categories according to different factors.  These 
so-called source bins differentiate activities according to vehicle characteristics such as fuel type, 
engine type, model year, loaded weight, and engine size. On the other hand, operating mode bins 
differentiate the emissions accord- ing to second-by-second vehicle activities defined by vehicle 
specific power (VSP) - a measure of the power demand placed on a vehicle under various driving 
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modes and instantaneous speed distributions, and classified according to average speed, road type, 
and vehicle type. After classifying activities into different bins, MOVES assigns an emission rate 
for each unique combination of source and operating mode bin.  Once the emission rate is 
assigned to each source and operating mode bin, the emission rates are aggregated to produce an 
overall emission rate for each source-use type. A few correction factors are also applied to the 
emission rates to adjust for the influence of temperature, air conditioning, and fuel effects. More 
detailed technical discussion of MOVES can be found in US EPA (2002). 

 
Figure 1 CO2 emission rates for two types of trucks 

By running MOVES, we are able to obtain a matrix of emission rate by vehicle speed for each road 
type, vehicle type and analysis year.  In the second step, quadratic functions are employed to fit 
the emission- speed relationship. Figure 1(a) and Figure 1(b) show both the original data and the 
fitted function for two different truck types in 2011. The plots in the figures indicate that the 
emission factor (gram/mile) is a non-monotone function of speed, which implies that the optimal 
emission is not achieved at the maximum speed.  This observation confirms that one may have to 
balance the environmental and time-related costs to optimize the total cost. For the single unit short-
haul truck, the CO2e emission rate function ra(·) (gram/mile) is specified as 

ye(v) = 0.7335v2 − 80.25v + 2871.5                                            (1) 

where v is the vehicle speed. 

3.2.2 Reliable and Sustainable Freight Routing Model 

The reliable freight routing problem aims to minimize the total operating cost (travel time and fuel) 
of travelling between a given origin-destination pair r-s, while taking reliability and emission costs 
into consideration. Let us denote la, va, ta, ha and ea as the length, speed, travel time, fuel 
consumption and CO2e emission on link a. Note that ta, ha and ea can be computed from va using: 
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ta = la/va, ha = layh(va), ea = laye(va)      (2) 

where ye is defined in (1) and yh is a fuel consumption function. To estimate fuel consumption, we 
note that a linear relationship approximately holds between the CO2e emission and fuel 
consumption rates according to the carbon balance (Bath et al. 1996): 

ea = γ1ha        (3) 

γ1 is near 3, as shown in (Nie and Li 2012). Hence, 

yh(va) = ye(va)/γ1 
Thus, once va is specified, all the relevant cost components can be readily computed from (2). We 
shall assume that the freight carrier converts each cost component on a path to a monetary value 
through a general conversion function. Let f, g and p be the conversion function associated with 
travel time ta, fuel consumption ha and CO2e emission ea, respectively.  For further flexibility, a 
weight vector is introduced so that the decision maker can adjust the objective according to 
specific requirements. Hence, our reliable routing problem is to 

 
where A is the set of all links in the network.  The objective function (4a) is a weighted 
combination of travel time, fuel and CO2 emissions; Constraint (4b) is the flow conservation 
constraint, where I(i) and O(i) are the set of incoming and outgoing arcs of node i, and di=-1, 1, 
and 0, for i=r, i=s, and i≠{r, s}, respectively; Constraint (4d) enforces the solution variables to 
be integers. Finally, Constraint 4(c) incorporates reliability consideration by requiring one random 
path cost dominates a corresponding benchmark in the sense of second-order stochastic dominance 
(as the symbol  entails). This constraint requires some elaborations. 

A widely adopted behavioral assumption in economics and finance (e.g., Friedman and Savage 
1948) states that decision makers always choose the alternative that provides maximum expected 
utility. Specifically, if E[U (X )] ≥ E[U (Y )], then X  is preferred to Y , where U is the utility 
function and E[·] denotes the expectation operator.  The following result is well known (Bawa 
1975, Wu and Nie 2011) 
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Theorem 1. A random variable X dominates another random variable Y in the second order, i.e, 

, if and only if E[U (X )] ≥ E[U (Y )] for any U such that U'<0, U" <0. 

A decision maker is considered “risk-averse” in this study if he/she always prefers the expectation 
of a random variable, i.e., E[X ], to X  itself (Friedman and Savage 1948).  Mathematically, this 

implies , where δX is a random 
variable such that P(δX = E(X )) = 1. According to Jensens’ inequality, the utility function U (·) 
satisfies the above condition if and only if it is concave, i.e., U" < 0.  It follows from Theorem 
1 that  if and only if all risk-averse decision makers prefer X to Y . Thus, Constraint (4c) 
ensures that all risk-averse decision makers prefers the random cost on the optimal path Σa∈A caxa 
to a benchmark πc, which is also random. For simplicity, this study determines πc using the 
corresponding cost on a predetermined benchmark path (Nie et al. 2011). However, we note that 
the benchmark variable may also be constructed artificially to reflect the degree of reliability 
requirements.  

Now the question is how to represent the SSD relationship between two random variable. A widely 
used definition states (Hanoch and Levy 1969, Hada and Russell 1971) 

However, using the above definition to represent SSD is neither convenient nor efficient, as it involves 
numerical integrations. The following result, due to Dentcheva and Ruszczynski (2003), offers a 
computation- ally convenient alternative. 

 

Proposition 1 can be employed to check SSD in the case of discrete distribution. Specifically, 

 

Using this result, Constraint (4c) can be replaced with the following 
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where θ ∈ Θ is a realization of the selected random cost c = t, h, e and η ∈ Φ is a realization of 
corresponding benchmark variable. Pθ and Pη are the probability of the realizations θ and η, 
respectively; ca(θ) and πc(η) are the realized cost and benchmark cost. s(θ, η) : Θ × Φ → R are 
dummy variables introduced to deal with nonlinear operator [·]+ . 

We now focus on exploring instances of the mathematical program P0 that represent different 
ways of balancing the three objectives: efficiency (measured by time and fuel costs), reliability 
(measured by time and emissions) and sustainability (measured by emissions). Let us first consider 
the conversion functions f, g and p. A commonly used form is to take the expectation of the 
underlying path cost, and then convert it to the monetary value. Using this form, the conversion 
function for travel time may be formulated as 

 
where α is the value of time, and may be estimated based on the truck driver’s average wage rate. 
Similarly the conversion functions for the fuel cost and CO2e emissions are 

 
where δ is the average price of one unit fuel consumption and κ is the average price of one 
unit CO2 emission. When the on-time delivery is important, the freight carrier may impose a 
penalty cost when the actual travel time deviates from a scheduled travel time τ0. Denoting the 
cost of each unit time of early and late arrival as β and γ, the conversion function for travel time 
may be written as follows: 

 
As mentioned above, the freight carriers’ reliability concern is captured using the SSD constraint 
with respect to either travel time or CO2e emissions, i.e., c = t or e respectively in Constraint (4c). 
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For a given benchmark path, each SSD constraint effectively defines a set of feasible paths that 
meet the reliability requirements of risk-averse decision makers.  It is worth emphasizing that the 
feasible set defined by the time and emission SSD constraint may be different. To see this, first 
note that the CO2e emission can be viewed as a nonlinear function of travel time as in the 
relationship (2). Let X and Y be two discrete random variables and f be a nonlinear function. We 
note that X  Y does not necessarily imply f(X)  f(Y). To see this, we first note, according to 
Corollary 1, 

 
for all yi. In the discrete case, the later equals Σw max[X (w) - yi, 0]pw ≤ Σw max[Y (w) - yi, 0]pw . 
Let W1 and W2 be the sets such that X(w) - yi ≥ 0 for all w ∈ W1 and Y(w) - yi ≥ 0 for all w ∈ W2, 
respectively. Then the above inequality can be written as: Σw∈W1(X(w) - yi )pw ≤ Σw∈W2(Y (w) - 
yi)pw. Clearly, X(w) - yi ≥ 0 does not necessarily imply f(X(w)) - f(yi)≥0 when f is a nonlinear 
function. Hence, when the nonlinear transformation f is applied, the set W1 and W2 may be changed. 
Even if the sets remain unchanged, 

 
Table 1 lists possible variants of P0, each corresponding to a combination of objective function 
and SSD constraint. In these variants, P1 is considered a base program because it neither 
incorporates reliability constraint nor considers environmental costs in the objective function.  
Compared to P1, P2 still does not consider reliability but adds the emission cost into the objective 
function. Yet, P2 requires estimating κ, the volatile price of CO2e. P3 and P4 introduce time and 
CO2e emission SSD constraint respectively into P 2 in order to assess the impacts of various 
reliability measures on the total routing cost. P5 and P6 are similar to P3 and P4 except emission 
cost is excluded in their objective functions. Moreover, P7 and P8 are designed to reflect the impact 
of benchmark path on feasible region. 

Numerical experiments presented in the following section will test and compare P1 through P8 in 
order to understand how each of the routing objectives, as well as the way by which they are 
incorporated into the decision making affects the optimal routes. 

Table 1 Variants of reliable freight routing models 
Formulation Objective Function SSD Constraint 

P1 f1 + g1 None 
P2 f1 + g1 + p1 None 
P3 f1 + g1 + p1 Time 
P4 f1 + g1 + p1 Emission 
P5 f1 + g1 Time 
P6 f1 + g1 Emission 
P7 f2 Time 



 
 

21 

P8 f2 Emission 
 

3.3 Numerical Experiments 
Numerical experiments presented in this section consist of three parts. The first part is conducted 
on a small network to demonstrate the basic properties of P0. The second test compares all eight 
formulations over a larger network. The third example uses a real network from the Chicago region 
with random travel time distributions being estimated based on real traffic data.  Unless otherwise 
specified, we set α = 20 $/hr, γ = 40 $/hr, β = 20 $/hr, δ = 0.0015 $/gram, κ = 20 $/ton, and τ0 = 
0.5 hr. δ is calculated by assuming the price of gasoline is 4$/gallon and the gasoline weight is 6.073 
lb/gallon. All models are coded in AMPL and solved by CPLEX. 

3.3.1 Four-node Network 

The first test network contains four nodes and five links. The random travel speed on each link can 
take one of the three values, 40 mph, 55 mph and 70 mph, with certain probabilities (Figure 2). 
Link travel times as well as fuel consumption and CO2e emissions rates, corresponding to each 
speed value, can be calculated based on Equation (2). In this example, link speeds are assumed to 
be independently distributed. 

For the given inputs, Path 2 has the least expected travel time while Path 3 has the least expected 
emission and fuel consumption (See Figure 2). Let ξk and ψk denote the path travel time and CO2e 
emissions on path k. In terms of SSD relationship for travel time, it is easy to verify (based on 
Proposition 1) that (1) ξ 2 ξ1; (2) ξ3 ξ1; (3) there is no dominance relationship between ξ 2 and 
ξ3. Also, in terms of SSD relationship for emission, (1) ψ3 ψ1 ; (2) ψ3 ψ2 ; (3) there is no 
dominance relationship between ψ1 and ψ2. 
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Figure 2 Topology, link and movement properties of the four-node network 

 
Table 2 Optimal solutions for the four-node network 

Benchmark Path 1 Path 2 Path 3 
P1 Path 2(54.86) 
P2 Path 2(56.05) 
P3 Path 2(56.05) Path 2(56.05) Path 3(56.33) 
P4 Path 3(56.33) Path 2(56.05) Path 3(56.33) 
P5 Path 2(54.86) Path 2(54.86) Path 3(55.22) 
P6 Path 3(55.22) Path 2(54.86) Path 3(55.22) 

Models P1 through P6 are solved and the results are reported in Table 2.  In the table, each 
column corresponds to a different benchmark path.  For example, column 2 represents the optimal 
path for each model when the benchmark is set as Path 1. In P1 and P2, no benchmark is used. 
Path 2 is chosen as the optimal path in both P1 and P2. Note that the difference between P1 and P2 
lies in the inclusion of emission costs.  However, it is clear that the impacts of emission cost are 
not significant ($0.71) because of the low carbon price used in the test ($20/ton).  Unfortunately, 
it is hard to estimate the exact emission cost.  To address this issue, a sensitivity analysis is 
conducted to examine the impact of emission cost on path choice. In our sensitivity analysis, we 
increase the value of emission cost until a new path is selected as optima. Path 2 remains optimal 
until emission cost is increased to 80$/h. After that, Path 3 is selected as the optimal path. Our 
sensitivity analysis implies that the value of emission cost may impact the optimal path choice. 
However, determination of such cost is not a easy task. Therefore, it seems more appealing to treat 
emission as constraint instead of objective in the face of environment consideration. 

Comparing the results of P3 and P4 shows that the choice of benchmark path affects the optimal 
solution. In P3, when the time SSD constraint is implemented with Path 1 as the benchmark, the 
optimal path is Path 2. This result is expected since all three paths dominate Path 1 and Path 2 has 
the lowest cost. Similarly, the optimal path is Path 2 and Path 3 when the benchmark is set as Path 
2 and Path 3 respectively. In these two cases, the only feasible path is the benchmark itself. Similar 
observations can be made for the emission constraint.  When the benchmark path is Path 1, P3 
and P4 admit Path 2 and Path 3 as the optimal path, respectively. Path 2 is ruled out in P4 since 
there is no dominance relationship between Path 1 and Path 2. Note that P4 thus generates a 
solution with a higher cost, which is more reliable in terms of meeting the emission standard. 
Comparisons between P5 and P6 generate similar insights and hence are not discussed here in 
detail. 

3.3.2 Acyclic Network 

We next test a larger acyclic network with 24 nodes and 36 links (See Figure 3(a)). We consider 
only one O-D pair (1-18) in the network which contains 12 paths. A joint distribution of link 
traversal speed with 50 realizations is created. Each realization θ is assigned a random probability 
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generated from a [0,1] uniform distribution such that 𝑃*

=

1,*
-

.

/ . For each realization θ, link 
speed vi is generated as its free-flow-speed 𝑣1234times a random scalar between 0.4 and 1. 

The test results are summarized in Table 3, which show that Path 4 is chosen as the optimal path in 
most cases.  Interestingly, Path 4 dominates all other paths in terms of both time SSD constraint 
and emission SSD constraints. Meanwhile, Path 4 has the lowest cost in all models except for P7 
and P8. 

 

Figure 3 Topology of networks used in the second and third experiments 

 

 

Table 3 Optimal solutions of eight models on the acyclic Sioux Falls network 

Formulation Optimal Path 
P1 Path 4(7.49) 
P2 Path 4(7.62) 
P3 Path 4(7.62) 
P4 Path 4(7.62) 
P5 Path 4(7.49) 
P6 Path 4(7.49) 
P7 Depends on Benchmark 
P8 Depends on benchmark 

 
Table 4 Results from P7 and P8 on acyclic Sioux Falls network 

Benchmark Path 1 Path 3 Path 5 Path 6 
P7 
P8 

Path 5 
Path 6 

Path 6 
Path 3 

Path 8 
Path 5 

Path 1 
Path 5 
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For P7 and P8, Path 4 is not always the one with smallest objective value; accordingly, different 
paths are identified as the optima when the benchmark changes. The optimal path obtained in such 
a case hence reflects the change of feasible set due to the choice of the benchmark.  To further 
examine this issue, the benchmark path is changed from Path 1 to Path 12 in this experiment. 
Table 4 lists the benchmark paths for which P7 and P8 generate different solutions. Since Path 2 
has the least penalty cost among all paths for the given inputs, it would be the optimal path if it 
dominates the benchmark path. However, we found that Path 2 dominates none of the paths listed 
in Table 4. When Path 1 is set as the benchmark, both Path 5 and Path 6 dominate it in terms of the 
emission constraint. Since Path 6 has lower penalty cost, it becomes the optimal solution. However, 
as Path 6 is dominated by the benchmark in the case of time constraint, it is excluded from the 
feasible region; accordingly, the optimal path becomes Path 5. A close look reveals that, for the 
time SSD constraint, Path 5 Path 1 Path 6; and for emission SSD constraint, Path 5 Path 
6 Path 1.  This clearly indicates that the rank of stochastic dominance is changed after nonlinear 
transformation. 

3.3.3 Chicago Network 

Note that SSD constraints introduced in order to ensure that the optimal paths satisfies certain 
reliability standard, either in terms of travel time or emissions. In effect, incorporating these SSD 
constraints provides travelers protection against risk.  However, because the feasible region is 
reduced after imposing these additional constraints, the objective function value may increase.  
The questions is whether the benefits of risk-aversion outweighs the extra cost.  Our example is 
implemented to provide some insights on this question using a real-world network. To this end, 
we define risk premium as the difference in the objective function value between the model with 
and without SSD constraint.  Thus, risk premium measures how much one has to pay in order 
to hedge against risk in the SSD sense.  Clearly, the risk premium may be defined with respect to 
either the time or emission constraint. 

Models P2 through P4 are considered in this experiment because they have the same objective 
function but different constraint structure: P2 has no constraint while P3 and P4 have time and 
emission SSD constraints, respectively. 

The experiment is implemented on a real-world road network, which is part of the Chicago 
regional network (see Figure 3(b)). The upper right dense corner is the Chicago Loop. This 
network contains 1736 nodes and 4622 links. Travel times on links are collected from detectors 
on the road. These data are used to form a marginal travel time distribution for each link. We then 
use these marginal distributions to draw a sample that contains 100 realizations. Each realization 
contains travel times for all links in the network. In total, there are 100*100+100+100*100 = 
20100 constraints associated with the linearization of the SSD constraint. Because of its size, 
solving the constrained model is time-consuming. On the computer used in the test (Intel Core i5-
2400 CPU @3.1GHz, 16GB RAM, 64-bit OS), solving each constrained model takes roughly 1.5 
hours. 
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Figure 4 Illustration of risk premium in the Chicago network 

We randomly select 20 O-D pairs and solve each of the three models for each O-D pair. Figure 
4(a) and Figure 4(c) compare the objective function values in different models. In these plots, the 
horizontal axis is the objective function value in the SSD-constrained case, while the vertical axis 
is the objective value in the non-SSD-constrained case. A point in the plot represents an O-D pair. 
We can observe that all points lie on or below the 45 degree line, which verifies that the SSD 
constraint may change the solution by excluding the optimal path in the unconstrained model 
from the feasible set.  Figure 4(b) and Figure 4(d) report the risk premium, as well as the ratio 
of risk premium to the optimal cost in P2. The plots indicate that in the worse case the risk premium 
is about 18% of the optimal cost for P2, for both time and emission cases.  That is, incorporating 
reliability requirements could increase the total cost by up to 18%. Risk premium clearly depends 
on O-D pairs. For some O-D pairs, the risk premium is zero, in which case the optimal path is the 
same for all three models. 
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3.4 Conclusions 
The focus of this study is to explore different modeling approaches to incorporating environmental 
measures and reliability concerns into freight routing models. Using MOVES, we estimate a 
relationship between the CO2e emission rates and link speeds. The emission rate function obtained 
in this study is clearly non-monotone (with respect to speed), which confirms that minimizing 
travel time and emissions are conflicting objectives. To trade off time and emission costs, one can 
simply convert both into monetary values using an estimated “market price”.  The main problem 
with this simple method is that the price of CO2 is notoriously difficult to estimate.  Various 
solutions are explored in this research to overcome this problem, including sensitivity analysis 
and incorporating the emission cost as a constraint.  A notable feature of the proposed modeling 
framework has to do with how it addresses uncertainty. By assuming decision makers are risk-
averse, the proposed models capture their reliability concerns by introducing a second-order 
stochastic dominance (SSD) constraint on either random travel time or random emission on a path. 
These constraints narrow down the feasible set to those paths whose travel time (or emission) 
distribution stochastically dominates a benchmark distribution in the second order. 

The reliable freight routing model proposed in this study has a flexible structure that can be 
easily tailored to a variety of modeling preferences. Taking the advantage of this flexibility, the study 
experiments with different strategies to trade-off efficiency, reliability and sustainability in the 
context of freight routing. The main findings from our numerical experiments are (1) modeling 
emission as a constraint seems more appealing due to the difficulty of estimating monetary value 
of emission cost; (2) the feasible set, hence the optimal solution, depends on constraint type (time 
or emission), as well as benchmark choice; and (3) avoiding risks in the SSD sense could increase 
the total cost by up to 20% in a real network. 

The reliable routing model proposed in this study may be extended to simultaneously include time 
and emission SSD constraints.  Clearly, such a model would have even smaller feasible sets and 
higher risk premiums.  Because it significantly affects the feasible set and optimal solution, the 
benchmark choice is worth of further investigation. Indeed, such a choice may not be tied to a 
physical path. In the case where the emission standard is given in the form of a distribution, for 
example, the SSD constraint can be used to guarantee that the standard is met in the SSD sense. 
Developing specialized algorithms to solve the proposed models is another possible direction for 
future research. 
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4. Part II: Eco-Routing Considering Microscopic Vehicle Operating 
Conditions 
The eco-routing model proposed in this chapter assumes that eco-drivers aim to meet an emission 
standard imposed by regulators, while trying to find the path with minimum total operating cost, 
which consists of both travel time and fuel costs.  Existing CO2 emissions standards typically 
regulate the average CO2 emissions per unit driving distance for new vehicles. For example, the 
United States Environment Protection Agency (EPA) is finalizing regulations that will require the 
CO2 emissions of new passenger cars (light-duty trucks) be reduced from 268 (346) gram per 
mile (gpm) in 2012 to 225 (298) gpm in 2016, which corresponds to an increase of fuel economy 
from 33.6 (25.7) mile per gallon (mpg) to 39.5 (29.8) mpg. Europe Union’s emission reduction 
target is much more aggressive, requiring all light-duty vehicles introduced after 2012 to emit 120 
gram per kilometre (193 gpm) or less. Therefore, for eco-drivers, the most straightforward 
constraint is to require the average unit distance CO2 emissions not to exceed the published 
standard over all feasible paths. 

Our first objective is to approximate the impacts of major acceleration events associated with 
link changes and intersection idling, and yet does not require detailed acceleration data as 
inputs.  Built on the Comprehensive Modal Emissions Model (CMEM) (Barth et al. 1996, 2000), 
the emission model employed in this study attempts to link emission rates to vehicle’s physical 
and operational properties (weight, drag coefficient, air conditioning etc.). However, it obviates 
CMEM’s requirements for real-time operational parameters such as engine’s gear reduction ratio 
and acceleration rate, which are rarely available in the context of route planning. Moreover, 
drivers are assumed to always drive at the prevailing speed on a road, and only 
accelerate/decelerate when (1) the prevailing speed changes as they move from one road to another, 
or (2) when they incur waiting at an intersection. A simple physical model based on the constant 
acceleration assumption is used to analyze acceleration induced emissions in these events.  
Importantly, our analyses indicate that for typical range of parameters, the majority of these 
“extra” emissions can be captured using a term independent of acceleration. 

Our second objective is to explicitly capture idling events at intersections. Not only does the time 
spent in an idling event directly contribute to emissions, such an event also necessitates acceleration 
to the prevailing speed on the next link. Clearly, the waiting time spent at an intersection is a 
random variable conditional on the movement. Left turns, for instance, are likely to subject to 
higher waiting times compared to other movements. To this end, a probabilistic distribution is 
introduced to describe the waiting time associated with each turning movement. Accordingly, the 
expected delays and emissions associated with a given route will be evaluated based on these 
distributions, and used in routing decisions. 

The rest of the section proceeds as follows.  Section 4.1 describes the fuel and CO2 emission 
estimation models employed in this study. Section 4.2 analyses the impacts of accelerations on 
emission estimations. The eco-routing model is presented in Section 4.3, which considers the 
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impacts of acceleration and intersection idling on fuel and CO2 emissions. Numerical experiments 
are reported in Section 4.4 and Section 4.5 concludes the study and discusses directions for future 
research. 

4.1 Fuel and CO2 Emission Model 
This section briefly describes our approach to estimating fuel and CO2 emissions, which is built 
on CMEM (Barth et al. 1996, 2000). CMEM is preferred in this study because it provides an 
analytical link between an individual vehicle’s characteristics (mass, speed, acceleration etc) to 
second-by-second fuel consumption rates. This analytical mapping does contain parameters that 
can be calibrated from driving cycle data.  

In our model, the total engine power P is estimated as a function of vehicle speed v and acceleration 
a. 

    (14) 

where the coefficients are specified as follows: 

 (15) 

The above model differs from CMEM in the non-idling case in that the engine power used to 
overcome frictions is estimated by assuming a simple relationship between the engine reduction 
ratio and vehicle speed. The reader is referred to Nie and Li (2012) for more details. Once the 
engine power is determined, the fuel consumption rate can be estimated using 

f = φP /λ;                                                              (16) 

Table 5 offers detailed description of all the variables, including default values and ranges. Once 
the fuel rate is determined, the CO2 emission rate, denoted as eCO2, can be estimated based on 
the carbon balance (Nam 2003, Barth et al. 2000): 

eCO2 = γ1 f + γ0                                                      (17) 
where 

 

  (18) 
Details of the parameters used in Equation (4) can be found in Table 6.  We note that these 
estimates are aggregated over a fleet of vehicles and hence may not precisely predict emissions 
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for a particular car. Nevertheless, as long as the trends are reasonably captured, such inaccuracy 
should not adversely impact route choice.  Moreover, a model with the above structure can be 
easily updated with newly calibrated parameters. 

Equations (19) and (20) estimate the fuel and CO2 emissions in the unit of gram per second. It is 
often more convenient to measure these emissions on the basis of distance. Let F and ECO2 denote 
the fuel and CO2 emissions in the unit of gram per meter. F and ECO2 can be calculated as 

 

(19) 

(20) 

For the default valued reported in Table 6, γ0 ~ -0.016 and γ1 ~ 3. Hence, in practice, ignoring γ0 
from CO2 estimation is an acceptable approximation. 

Figure 5 depicts how fuel and CO2 emissions vary with the cruise speed, when acceleration is 
assumed to be zero (for convenience, the units have been converted from metric to the U.S. 
customary).  A few remarks are in order here. First, the fuel emissions associated with the tractive 
power (Ft) in Figure 5(a) always increases with v, whereas the contribution by engine friction 
(Fw) always decreases with v.  The tradeoff between the two seems to be the driving force behind 
the U-shape of the overall fuel economy curve. Second, for the default values, our model predicts 
that the fuel economy peaks at about 30.57 mile per gallon (assume 1 gallon of gasoline weighs 
2.7896 kg) when the cruise speed is 53.2 mpg.  We note that the predicted optimal speed lies in 
the fuel-economy maximizing range recommended by most web sites that promote eco-driving 
(see e.g. http://www.fueleconomy.gov/feg/driveHabits.shtml, last visited on 5/25/2012). Finally, 
our model predicts the lower bound of the CO2 emission is around 270 g/mile, which is very close 
to the aforementioned EPA’s proposed CO2 emission standard for the 2012 fleet (268 g/mile). To 
summarize, the trend of the fuel and CO2 emissions captured by the proposed model seems to 
reasonably agree with the known empirical evidence. 
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Table 5 Description of parameters used in calculating fuel emission rates 

 
Notes: 

1.  The air density is specific to the Chicago area. 
2.  Default values for A and Cd are selected from various sources. They closely resemble those of a 
typical passenger Sedan such as Honda Accord built in 1990’s. 

3.  The default value is based on gasoline. 

4.  The default fuel air ratio is 1.5 for acceleration and 1.0 for all other operating conditions. 
5.  The default value represents the basic accessory power. The power required to run air conditioning ranges 
between 1000 to 3000 W (9). 
6.  The default value is close to the curb weight of an average passenger car. 
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Table 6 Description of parameters used in calculating CO2 emissions 
Name Unit Value Comment 
Ar(CO2) - 

 
44  

Ar(C) - 
 

12  
Ar(CO) - 

 
28  

µ - 
 

1.85 For typical gasoline only  
 c5 - 

 
0.4074 Nam (Table 5 16) 

c6 - 
 

0.1174 Nam (Table 5 16) 
c7 - 

 
0.01 Nam (Table 5 16) 

c8 g/s 0.0049 Nam (Table 5 16) 
 

 

 

Figure 5 Fuel and CO2 emissions vs. cruise speed (a = 0). Parameters take defaults values as 
reported in Tables 5 and 6. 

4.2 Impacts of Acceleration 
Impacts of vehicle acceleration on such applications as route choice and traffic assignment are often 
ignored in the literature. While obtaining acceleration data is difficult, incorporating them in route 
choice decision seems even more challenging. To address these obstacles, this section proposes a 
new method that aims to approximate the impacts of acceleration while excluding acceleration as 
a decision variable in the model. 

The proposed method divides the movement of a vehicle on each link into two stages, an 
acceleration/deceleration stage and a cruise stage.  Once a vehicle enters a link, it will change 
its cruise speed to the current link’s prevailing cruise speed, denoted as v 1.  Denote the initial 
speed at the entrance as v 0, which may be either zero (if the vehicle starts the trip at the link) 
or the cruise speed of the predecessor link. To simplify the analysis, we assume that (1) the vehicle 
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enters the link at time t = 0; (2) the acceleration/deceleration rate a is a constant; and (3) the length 
of the link, denoted as l, is long enough to allow the vehicle’s speed to reach v1. As per 
Assumptions (1) and (2), the time and distance required to reach v1 are respectively ta= (v1−v0)/a, 
and la = 0.5 𝑣/5

−

𝑣*5

/

𝑎.  Assumption (3) implies that la < l.  

Let f(t) be the fuel emission rate at time t. When v0 < v1, i.e. a > 0, the total fuel emission on the 
link is computed by 

 
where ϕa= 1.5 is the fuel air ratio during acceleration. The total fuel emission for the cruise stage 
is given by 

 
where ϕ0 = 1 is the “normal” fuel air ratio. Hence, the total emission for a link of length l for 
acceleration is 

 

(21
) 

(22
) 

(23
) 

Clearly, the first term in Equation (21) is an estimation of total emission when completely 
ignoring the impacts of acceleration, and the last three terms are corrections associated with 
acceleration.  While the total emission may be directly calculated from (21), we note that further 
simplification may be possible. As indicated in Figure 6(a-c), the magnitude of σ2 and σ3 seems of 
secondary significance compared to that of σ1 for the default parameters. Specifically, Figure 6 
shows that the terms associated with σ2 and σ3 account for less than 10% of all acceleration-related 
fuel emissions in most cases. While the percentage is higher for lower value of v1, the overall 
emissions contributed by acceleration are small in those cases (see Figure 6(a)). 
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If v0 > v1, the vehicle has to decelerate from its initial speed to the current cruise speed (a < 0). 
Note that no tractive power is needed to decelerate a vehicle; instead, a is provided by the braking 
force. In this case, the total fuel emission becomes 

TF  = lF (v, 0) + ϕ0(σ2 + σ3 )                                           (24) 

 
Figure 6 Impacts of acceleration on fuel emissions for different v1 and v0. Parameter values are 
taken from Table 1. a = 3m/s2, v0 and v1 range from 1 to 40 m/s, or from 2.2 to 89.2 mph). (a) 
ϕaσ1, (v0 ≤ v1); (b) ϕaσ2 + ϕ0 σ3,(v0 ≤ v1 ); (c) 89:;<8=:>

89:?<89:;<8=:>
 (v0 ≤ v1 ); (d) ϕ0 (σ2+σ3) (v0>v1) 

Figure 6(d) shows that the deceleration-related impacts ϕ0 (σ2 + σ3) may take either positive or 
negative values when v0>v1 - this is expected as distance-based emissions are not monotone in 
speed.  Yet, the term is relatively small for most combinations of v0 and v1.  It is significant only 
when 𝑣* ≫ 𝑣/.  Even in that case the contribution of a major deceleration event barley reaches 
about 20 grams, an equivalent of fuel consumption in cruising about 0.25 miles at the most 
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favorable speed.  Moreover, the impacts of different deceleration events in a route may cancel 
each other, because they can take positive or negative values depending on v1. 

In light of the above observations, we propose to ignore the second and third terms in Equation 
(21) and the second term in (24). Accordingly, the total fuel emissions of a link with cruise speed 
v1 and length l are estimated as follows: 

 
(25) 

where σ1 is defined in (22).  Such a simplification is useful because it allows one to estimate 
with reasonable accuracy the impacts of acceleration on total emissions, without requiring the 
knowledge of actual acceleration. 

Finally, we note that all plots in Figure 5 assume |a| = 3m/s2. The terms associated with σ2 and σ3 
will become larger for a smaller a because they inversely depend on a as per Equation (23). Hence, 
the proposed approximation will become less accurate for smaller |a|. Nevertheless, the reader can 
verify that even for an acceleration as small as 0.5m/s2, the fuel consumptions contributed by σ2 
and σ3 would still be less than that of σ1. 

4.3 Eco-Routing Model 

Consider a network G(N , A) that consists of a set of nodes N and set of link A. Each link b is 
associated with a length lb and a cruise speed vb. Let I(i) and O(i) be the set of incoming and 
outgoing links at each node i ∈ N . Let a ∈ I(i) and b ∈ O(i) be a pair of links that identify a possible 
turning movement, denoted as m, across node i.  Each m is defined by the origin link a and the 
destination link b.  For convenience, this is written as m− = a, m+ = b.  A set of all valid 
movements at node i is denoted as Mi.  For each m ∈ Mi, w̃m denotes the waiting time of the 
movement, modeled as a discrete and independent random variable. Specifically, w̃m can take a 
discrete set of values {w0, w1, ...} with a corresponding probability m mass {𝑝2

*

,

𝑝2/ ,…}.  Without 
loss of generality, we assume 𝑤2

*
= 0 for any m.  Let tb and Fb denote the travel time and fuel 

emission on link b. We have 

 
(26) 

where F(·) are defined in Equation (19).  Further, the waiting time and fuel emissions associated 
with the movement m, denoted as t̂m, F̂m and Êm respectively, are given by 
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(27) 

(28) 

Note that t̂m is simply the expected waiting time on m, whereas F̂b consists of both the emission 
associated with engine idling (because of waiting) and the extra energy consumed to accelerate 
the vehicle from stationary to the cruise speed on the next link m+ (as defined in (22)). When the 

waiting time is zero, the extra energy consumption is associated with the speed change from m− 

to m+, and equals zero if vm- > vm+. To calculate the CO2 emissions on link b and movement m, 

denoted as Eb and Êm respectively, we use the following approximation 

Eb = Fb γ1 ; Êm = F̂m γ1                                               (29) 

where γ1 is defined in (18).  We note that the CO2 emissions given by (29) ignore the effects 
of γ 0 (cf. Equation 17), which would lead to slight overestimation of CO2 emissions. As explained 
before, however, such effects are expected to be quite small. 

We assume that eco-drivers aim to choose a route that minimizes the total travel cost, while 
meeting a given CO2 emission standard. For the convenience of representing turning movements, 
we assume that a trip starts on link r and ends on link s. Our eco-routing problem is formulated as 
follows: 

 

(30a) 

(30b) 

(30c) 

(30d) 

(30e) 

(30f) 

(30g) 
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In this formulation, xb and ym are solution variables that depict routing decisions. The objective 
function (30a) represents the total expected cost of a given route, where Wt and Wf are the value 

of travel time and the prevailing price of fuel, respectively. tb, Fb , t̂m and F̂m are defined in 
Equations (26-28). Constraints (30b-30c) state the link-based flow conservation condition.  
Constraint (30d) requires that the expected emission on the path should be lower than an 
established standard.  Constraint (30e) defines the demand between links r and s as 1. Finally, 
Constraints (30f -30g) require xb and ym be binary variables. 

4.4 Numerical Experiments 
In this section, two numerical experiments are conducted to test the eco-driving model proposed 
in the previous section.  The first example is designed to examine the sensitivity of the model 
to selected vehicle characteristics (such as engine displacement, weight, auxiliary power). The 
second example aims to demonstrate the impacts of acceleration and idling on the route choice 
decision. Unless otherwise specified, we set Wt = 15$/hour and Wf = 0.0015$/gram.  Note that Wf 
is calculated by assuming the price of gasoline is $4/gallon and the gasoline weight is 6.073 
lb/gallon.  The models are coded in AMPL and solved by CPLEX. 

4.4.1 Impacts of Vehicle Characteristics 

In this section, a simple 4-node network is constructed to illustrate the impacts of vehicle 
characteristics, as shown in Figure 7. The first number in the triplet is link number while the second 
and third being link length and speed respectively. Waiting time distribution of all movements, as 
well as tm and Fm, is also listed in Figure 7. In the movement table, the link 0 and 6 are dummy 
links created for origin and destination. We assume the prevailing speed on these links is 0. Our 
test is conducted on four cases involving three different types of vehicles, as detailed below.  

1. passenger car: M = 1500kg, Cd = 0.3, V = 2L, Pa = 1000W 
2. passenger car with air condition turned on: M = 1500kg, Cd = 0.3, V = 2L, Pa = 3000W 
3. minivan: M = 2730kg, Cd = 0.35, V = 3.6L, Pa = 1000W 5 
4. light duty truck: M = 1900kg, Cd = 0.53, V = 5L, Pa = 1000W6 

Parameters not mentioned above take the default values reported in Table 5. Because the network 
contains only three paths, the emission constraint is not used to filter out paths when we solve the 
eco-routing model. Instead, emissions on each path are calculated separately. 
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Figure 7 A simple four-node network 

 
Figure 8 Path cost and emissions for different vehicle types 

Figure 8(a) summarizes the total cost of the 4 types of vehicles on each path.  Evidently, the 
vehicle characteristics affect the total cost on the same path. In this case, the total costs on all 
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three paths increase when the vehicle type is changed from passenger car to minivan and then 
to light truck.  However, the magnitude of the increase depends on the type. Because of that, a 
light truck driver would rank the three paths differently than those who drive other vehicles. 
Specifically, the truck driver would consider Path 2 as the optimal path when the drivers of all 
other vehicles would choose Path 3, which is the all expressway option.  Such differences results 
from the high fuel cost of light truck on Path 3, see Figure 8(c).  Even though Path 3 (highway) 
is slightly longer, its high speed leads to short travel time, which compensates high fuel cost for 
passenger cars and minivans. Yet, as light duty truck’s large engine displacement leads to much 
lower fuel efficiency, the time benefit of traversing expressway cannot offset the fuel cost. 
Consequently, this experiment provides an example in which the path choice depends on the type 
of vehicle. In addition, the above results indicate that the impact of using air conditioning 
during operation is insignificant. Turning on air conditioning results in 25 gram (less than 3%) 
more CO2 emissions and about 10 cents more fuel cost in a 10-mile journey. Thus, avoid air 
conditioning while driving does not seem to be a worthwhile sacrifice for the sake of sustainability. 

4.4.2 Impacts of Acceleration and Idling 

In this section, a simple grid network that mimics a portion of a typical city center is constructed.  
The length of all streets is set to 0.7 miles and the speed limit is 30 mph on bold segments and 
25 mph on regular segments (cf. Figure 9). The network consists twelve links and nodes A and 
B are set as the origin and destination for eco-routing. There are six possible paths and eighteen 
possible movements for the given O- D pair. The movements are grouped into three categories: 
left turns, right turns and through movements. Movements in the same category are assumed to 
have the same waiting time distribution, as reported in Figure 8. As designed, the left turns cause 
longest expected delay while right turns have the lowest expected delay. Finally, the emission 
standard Ē is set to 400 gram per mile to ensure the constraint is not binding. 

To demonstrate the effects of acceleration and idling, the following four scenarios are considered, 
each corresponding to a specific objective function.  

Case 1: The objective function is set as Σb∈A(Wttb + WfFb )xb +Σi∈N Σm∈Mi (Wt𝑡2 + Wf F̂m )ym, 
which consists of both time cost and emission cost. Time cost (fuel cost) refers to the sum of 
time (fuel) cost on the path and waiting time (fuel consumption) at intersections. 

Case 2: The objective function is set to Σb∈A(Wttb + WfFb )xb +Σi∈N Σm∈Mi Wtt̂m ym, which 
suppresses the effect of acceleration. 

Case 3: The objective function is set to Σb∈A(Wttb + Wf Fb)xb. That is, the effect of turning 
movements is not taken into account. 

Case 4: The objective function is set to Σb∈AWttb xb, which represents the conventional shortest 
path problem. 



39 
 

 
Figure 9 Network topology and movement properties of the grid network 

The results from CPLEX indicate that the optimal path in the base case (i.e. Case 1) is Path 1. 
When the effect of acceleration is ignored, the optimal path becomes Path 4 or 5 (they have the 
same optimal cost). When turning movements are not considered, the optimal path is changed to 
Path 5. Thus, the consideration of microscopic vehicle operating conditions does affect eco-driving. 
For the purpose of verification, Table 7 enumerates all six paths and computes their total costs in 
each scenario. 

Table 7 Total costs of all paths (All in monetary value except for ’Emission’) 
Path Case 1 Time Cost 1 Fuel Cost 2 Emission (gpm) Case 2 Case 3 Case 4 

1 
2 
3 
4 
5 
6 

3.24 
3.55 
3.28 
3.25 
3.28 
3.28 

2.55 
2.84 
2.58 
2.55 
2.58 
2.58 

0.69 
0.71 
0.70 
0.70 
0.70 
0.70 

377.7 
390.3 
382.8 
383.3 
384.9 
384.2 

3.17 
3.45 
3.18 
3.15 
3.15 
3.18 

2.78 
2.78 
2.58 
2.58 
2.37 
2.58 

2.16 
2.16 
1.98 
1.98 
1.05 
1.98 

1.  the breakdown of time cost in Case 1 
2.  the breakdown of fuel cost in Case 1 

 
The effect of turning movement may be illustrated by comparing paths 1 and 2. If turning 
movements and acceleration are taken into consideration (Case 1), eco-drivers would prefer path 
1 ($3.24) to Path 2 ($3.55).  This is because Path 1 only has right turns and through movements 
while Path 2 include one left turn and two right turns, which renders increased time cost and 
fuel consumption.  When the effect of turning movements is ignored, however, both paths (1 and 
2) admit the same total travel cost ($2.78) -this is expected as they are exactly the same length 
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and free flow travel time. The extra cost on Path 2 in Case 1 clearly comes from waiting at 
intersections (both in terms of idling and implied acceleration events). Clearly, such a cost could 
potentially change the path ranking. Note that this example only shows the saving from avoiding 
one left turn. Savings could be much larger in a real network where multiple left turns may be 
included in an otherwise “good” path. 

Let us now compare paths 5 and 6 to show the effect of acceleration. When acceleration is not taken 
into account (case 2), Path 5 ($3.15) is better than Path 6 ($3.18) in terms of total cost. Yet, when 
acceleration is taken into account (Case 1), the costs of the two paths are identical ($3.28).  
Note that Path 5 is the conventional shortest path with the minimum travel cost $1.05 (Case 4) 
since all links on Path 5 have the higher speed (30 mph).  However, compared to Path 6, Path 5 
contains two more turns, one left and one right. Clearly, the idling cost at the intersection is still 
not enough to offset all the benefits of staying on the high speed links. Yet, stopping at intersection 
also implies that the vehicle has to accelerate back to the normal speed. When these costs are 
accounted, Path 5 is no more attractive than Path 6. 

4.5 Conclusions 
The eco-routing model proposed in this study adds several new features into a growing body of 
environment- sensitive transportation modeling literature. Unlike most studies in the literature, the 
emission model developed in this study retains as many microscopic characteristics as feasible in 
the context of route planning. Our emission model is able to approximate the impacts of major 
acceleration events associated with link changes and intersection idling.  Perhaps more important, 
it accomplishes this through an approximation scheme that obviates using detailed acceleration 
profile as inputs.  Moreover, the proposed eco-routing model explicitly captures delays at 
intersections and the emissions associated with them.  Using a simple probabilistic model, the 
impacts of different turning movements on eco-routing are also incorporated. Finally, the 
greenhouse emissions are introduced into the model as a constraint, inspired by EPA’s regulation 
of new vehicle emission standards. Among other benefits, this approach bypasses the nasty task 
of estimating the price of CO2. 

The proposed model is tested using numerical experiments designed to highlight the 
aforementioned features. The main findings from these experiments are summarized below: 

c) Vehicle characteristics seem to influence path choice. Thus, the eco-routing model 
developed in this study is of practical importance because it is able to differentiate vehicle 
types. 

d) Incorporating turning movements and acceleration has significant impacts on eco-routing. 
Conventional models that simply ignore these microscopic vehicle operating conditions 
may provide sub- optimal route guidance to eco-drivers. 
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Developing efficient solution algorithms for the eco-routing problem is a logical next step and 
an on- going effort.  While the problem is known to be NP-complete, many efficient heuristics 
do exist that can make use of the special structure of the underlying problem. A few components 
in the proposed emission model requires calibration and validation, particularly the speed/gear 
reduction relationship, the simplifications made to engine friction calculation and important 
default values (e.g. fuel-air ratio under rich mix conditions). The eco-routing model discussed in 
this study is but a building block for higher-level transportation models (such as traffic assignment, 
network control, design and management) that focus on eco-driving behavior.  Extending the 
results from this study to those models constitutes an interesting direction for further 
investigation. 
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5. Part III: Eco-Routing Considering the Joint Effect of Cargo Weight and 
Vehicle Speed 
This research attempts to fill the literature gap by investigating the more realistic sustainable 
vehicle routing strategies by considering the joint effect of commercial vehicle load and speed on 
energy consumption (or CO2 emissions) or pollutant emissions or both.  Moreover, idling energy 
consumption and emissions at stops (due to loading and unloading at the customer’s) will also be 
incorporated in the optimal routing strategies.   

Specifically, this study presents the preliminary investigation towards filling that gap.  Using a 
numerical example we will demonstrate the complexity of optimal commercial vehicle routing 
based on energy consumption and/or emissions many factors (e.g., link speed, vehicle load, dwell 
time) often times do not work in the same direction for energy consumption and/or emissions.  In 
addition, loading/unloading cargo weight at a customer stop will affect the vehicle load and thus 
the energy consumption and emissions in the rest of the route, which means the visiting order of a 
commercial vehicle to customers matters and makes the vehicle routing problem more complicated 
than the traditional shortest-path based routing.  And new optimization algorithms to solving such 
routing problems may be in order.  

This chapter is organized as follows. Section 5.1 describes the problem and the study approach 
followed by discussions of data source and parameter estimation.  Section 5.2 presents the 
numerical example results followed by sensitivity analyses of a set of key factors in Section 5.3.  
Lastly, study conclusions are provided in Section 5.4. 

5.1 Study Approach and Scenario Setting 

5.1.1  Problem Setting 

Consider the following graph: suppose there are n customers with demand Di (i=1,...,n) served by 
one vehicle departing and returning to the same depot 0.  The customer location (coordinates) and 
the distance of the arc connecting from node i to node j, Lij, (i=0,..,n, j=0,..,n, i≠j) are known.  
Assume that the total customer demand does not exceed the vehicle capacity – in other words, the 
vehicle is able to visit all the customers in one vehicle load.  There are different routing options 
(or visiting orders) to serve the customers depending on the selected objective (i.e. distance, energy 
consumption, emissions, or any combination of the three).  That is, for a selected route option, 

(a) Total pollutant emissions are the sum of all traveled arc emissions and node idling emissions 
defined as follows: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐸𝐹𝐿1MN
M.* ∗ 𝐿1M ∗ 𝑥1MN

1.* + 𝐸𝐹𝑁1 ∗ 𝐷𝑊1
N
1./                        (31) 

where, EFLij is the emission factor (in grams/mile) on arc ij (i=0,..,n, j=0,..,n, i≠j) 
            Lij is the length (miles) of arc ij 
            xij=1 if arc ij is visited , otherwise, xij=0; 
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           EFNi is the emission factor (grams/hr) at node i (i=1,...,n); 
           DWi is the dwell time (hrs) at node i (i=1,...,n) 

(b) Total energy consumption is calculated in the similar fashion to the total emissions, by 
substituting the emission factor (in grams/mile) with energy consumption rate (in Joules/mile).  

(c) Total travel distance is the sum of all visited arc lengths (in miles): 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐿1M ∗ 𝑥1MN
M.*

N
1.*                                                                          (32) 

5.1.2  Study Approach 

In this preliminary investigation, the distance-based, emission-based and energy-based routing 
options are compared and illustrated through a numerical example, and a number of sensitivity 
analyses are performed on vehicle weight (a surrogate for vehicle payload), arc average speed, 
cargo type and network topology to examine the effects of those factors on the routing decisions.   

The numerical example is adopted from Xiao et al. (2012) with modification.  In the example, 
there are three customers (n=3) served by a fully loaded single-unit truck departing and returning 
to the same depot (D).  The truck has a gross vehicle weight (GVW) of 30,000 lbs, with a curb 
weight of 8,000 lbs.  Assume that the vehicle has 20 units of payload (the unit demand is 1,100 lbs 
= (30000-8000)/20).  The customer demand (in units) and location (coordinates) are summarized 
in Table 8.  The arc distance is Euclidean distance, and further assume the arcs are representing 
urban arterials with a speed of 30mph.  Dwell time at each customer stop is also showed in Table 
8.  Detailed explanation is provided in Section 2.3 on how dwell time is estimated at stops. 

Table 8 Setup of Numeric Example 

Place ID Coordinate Demand(units) Dwell time (hrs) 
Depot (D) 0 (1,1) 0 0 
Customer1(C1) 1 (2,3) 8 2.0 
Customer2(C2) 2 (4,2) 10 2.4 
Customer3(C3) 3 (10,10) 2 0.6 

The U.S. Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES) is 
used to estimate the emission factors – PM2.5 is chosen to be the pollutant in this investigation – 
as well as energy consumption rate as a function of both speed and vehicle weight (US EPA 
2010). There are two sets of PM2.5 emission factors:  

• Arc emission factor, EFLij (grams/mile), is a function of both vehicle weight (Arcweightij) 
and arc speed(Vij), where		Arcweight1M = GrossVehicleWeight − Dhh , and p are the 
nodes which have been visited before enter arc ij, and Dp is the demand at node p.  
GrossVehicleWeight is the total vehicle weight at the start of the vehicle journey.  
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• Node idling emissions, EFNi (grams/hr), is a function of the average vehicle weight at node 
j (Nodeweighti), where		NodewightM = Arcweightkl − 0.5 ∗ Dl. 

5.1.3  Parameter Estimation 

To obtain realistic values of commercial vehicle weight/payload and speed in urban areas, we use 
Texas Commercial Vehicle Surveys data (Nepal et al. 2007) to generate the inputs to the MOVES 
model summarized in Table 9. The surveys were conducted in several counties in Texas including 
San Antonio, Amarillo, Valley, Lubbock and Austin during 2005 and 2006 through a vehicle 
information form and a daily travel log completed by the drivers or operators on an assigned day. 
The data set includes the trip information such as departure load factor, departure time, arrival 
time, location, cargo type, cargo drop-off/ pick-up weight; and the vehicle information such as 
vehicle type, fuel type, gross weight, and odometer readings, etc. More detailed data descriptions 
are provided in (Ruan et al. 2011).  This data set provides the real-world information to estimate 
the ranges of vehicle weight and dwell time, as well as common commercial vehicle type (single-
unit truck) and commercial vehicle travel speeds on arterial streets. Two key parameters, vehicle 
weight and dwell time, are described in detailed next. 

Table 9 Key Input Parameters to MOVES 
Input Description 
Analysis year 2013 
Road type Urban Unrestricted Access (arterials) 
Pollutants PM2.5, Energy consumption 
Emission Processes Running exhaust, crankcase running exhaust, brake and tire wear and 

tear 
Vehicle type Single Unit Short-haul Truck 
Vehicle speed 2.5-75 mph 
Vehicle weight (source mass) 4,000-50,000 lbs 
Fuel type Diesel  

Error! Reference source not found.GVW and payload 

To estimate the emission factors as a function of vehicle weight in MOVES, it is necessary to 
know the vehicle curb weight and payload. Vehicle curb weight is the total weight of a vehicle 
with standard equipment, all necessary operating consumables, a fuel tank of fuel, while not loaded 
with cargo. Gross Vehicle Weight (GVW) is the maximum vehicle operating weight specified by 
the manufacturer, including cargo weight.  In other words, a fully loaded vehicle has the following 
GVW:  

GVW=curb weight + maximum payload                                           (33) 

According to the Texas survey data, the range of GVW is between 4,000lbs and 50,000lbs and the 
ratio of maximum payload to curb weight is between 0.3 and 10 for a single-unit truck with 95% 
confidence of interval.  

Dwell time 
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Dwell time by cargo type was estimated using a linear regression model with the Texas survey 
data. It was found that the dwell time was highly correlated with cargo drop-off/pick-up weight at 
the stop: 

For food &beauty products,  
dwell time (hr)=0.203*cargo weight (×103lbs)+0.192667,  with R2=0.53        (34) 

For farm products,  
dwell time (hr)=0.01*cargo weight (×103lbs)+0.527017 with R2=0.38            (35) 

For manufacture equipment products,  
dwell time (hr)=0.103*cargo weight (×103lbs)+0.582283 with R2=0.42          (36) 

For parcel products,  
dwell time (hr)=0.36*cargo weight (×103lbs)+0.121537  with R2=0.37           (37) 

The numerical results to be shown in Section 3 are based on the dwell time estimates using Eq.34.  
A sensitivity analysis of cargo type on emissions and energy consumption is presented later in 
Section 5.3.3. 

Finally, after all the parameters were estimated and entered into MOVES, PM2.5 emission factors 
and energy consumption rates are displayed in Figure 10 and Figure 11 for the arcs and nodes 
respectively.   

It is found that the arc energy consumption rates and PM2.5 emission factors are decreasing 
functions of vehicle speed till about 65 mph. On the other hand, they are decreasing at first and 
then increasing with respect to GVW.  For example, the energy consumption rate reaches the 
lowest around 4,000 lbs of GVW at speed of 25mph and 8,000 lbs at higher speed >30mph. The 
PM2.5 emission factor reaches its minimum point at the GVW of 4,000lbs with a speed<20mph 
and at 8,000lbs with a speed >25mph.  These findings indicate that the optimal route for energy 
consumption might not be optimal for PM2.5 emissions.  

The node idling energy consumption rates and PM2.5 emission factors are convex functions of 
GVW; the minimum values occur at the GVW of 20,000lbs and 8,000lbs for energy consumption 
rate and PM2.5 emission factor, respectively. Note that the idling emissions and energy 
consumption are orders of magnitude lower than those of arcs – for example, for a 8,000lbs truck, 
PM2.5 emissions for an hour dwell time is 0.016 grams while the on-road PM2.5 emissions is 
10.3grams for an hour at a speed of 20mph.  However, idling emissions and energy consumption 
may add up to an un-negligible amount especially in a congested urban area where customer 
density is high with large drop-off/ pick-up cargo weights and power-on (idling) is required, e.g., 
for perishable grocery items.  
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Figure 10 Arc Energy Consumptions (Joules/mile) and PM2.5 Emission Factors (grams/mile) as 

a Function of GVW and Speed 
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Figure 11 Node Idling Energy Consumptions (Joules/hr) and PM2.5 Emission Factors (grams/hr) 
as a Function of Vehicle Weight and 

5.2 Numerical Example Results 
Three different visiting orders were considered in the numerical example defined in Table 8: (A) 
depot (0)->1->3->2->0, (B) 0->2->3->1->0 , and (C) 0->1->2->3->0.  Route B is a reverse order 
of Route A, and C represents a third alternative routing strategy.  Table 10 summarizes the resulting 
travel distance, energy consumption and PM2.5 emissions for the three routing strategies, A, B and 
C.   

Among all the possible routes, it is easy to see that the shortest-path visiting order should be 0-1-
3-2-0(Route A), or 0-2-3-1-0 (Route B), and the total distance is 26.03 miles.  However, Route B 
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saves 1.54% of energy consumption and 1.43% of PM2.5 emissions from Route A.  If the objective 
is to minimize the energy consumption, then the optimal visiting order should be 0-1-2-3-0 (Route 
C), with an optimal energy consumption of 5.07x108 joules.  Coincidentally, Route C also 
represents the minimal PM2.5 emission routing strategy of 11.87 grams.  What is interesting here 
is that Route C has a 4.5% longer travel distance and yet it brings 5.2% of energy savings and 6.6% 
less PM2.5 emissions compared to Route A.  This can be explained by the different vehicle weight 
distribution during the route in A, B, and C.  

Table 10 Numerical Example Results 

Route (i,j) 

Arc 
distance 
(miles)  

Total 
route 

distance 
(miles) 

Energy 
consumption 
(×108Joules) 

PM2.5  
(grams) 

 

(0,1) 
(1,3) 
(3,2) 
(2,0) 

2.2 
10.6 
10.0 
3.2 

26.03 
 

Arcs:5.32 
Nodes:0.0296 

Total:5.35 

Arcs:12.62 
Nodes:0.0846 
Total:12.70 

 

(0,2) 
(2,3) 
(3,1) 
(1,0) 

3.2 
10.0 
10.6 
2.2 

26.03 
 

Arcs:5.24 
Nodes:0.0297 

Total:5.27 

Arcs:12.44 
Nodes:0.0845 
Total:12.52 

 

(0,1) 
(1,2) 
(2,3) 
(3,0) 

2.2 
2.2 

10.0 
12.7 

27.2 Arcs:5.04 
Nodes:0.0297 

Total:5.07 

Arcs:11.79 
Nodes:0.0847 
Total:11.87 

 

D 



49 
 

In Route C, the customer with the smallest demand (C3) is served last, which means the heavier 
goods are unloaded first and early so the vehicle is traveling lighter for the most part of the route 
than in Route A or B. Thus the arc emissions and energy consumption are lowered more than in 
Routes A and B – recall the increasing effect of GVW on emissions and energy consumption (at 
speed of 30 mph) shown in Figure 10.  Note that Route C has slightly higher idling emissions 
because serving larger demand customers first while GVW is higher increases the idling emissions 
slightly than that with a lower GVW.  Overall from a sustainable routing stand point of view, Route 
C represents the most economical (in terms of energy consumption) and environmental friendly 
(in terms of PM2.5 emissions) routing strategy.  The flip side is that Route C incurs longer travel 
distance (or time).  In reality, if there is a time window constraint, the energy savings and 
environmental benefits may be dampened and even become negative.  

5.3. Sensitivity Analyses 
The numeric example results have demonstrated that considering vehicle weight and speed in 
routing can bring savings on energy consumption and/or PM2.5 emissions.  This section examines 
to what extent different factors may contribute to the savings by a serials of sensitivity analyses 
defined in Table 11.  Using Route A as a base, each analysis calculates the percent changes of 
distance, energy consumption and PM2.5 for Routes B and C, respectively, from Route A.  A 
positive value indicates that route A is preferable and a negative value demonstrates Route B or 
Route C brings savings.   

Table 11 Summary of the Scenarios in Sensitivity Analysis 

Factors Test value Section 
GVW(lbs) 
Weight ratio(payload/curb 
weight) 

8k, 16k, 30k, 45k 
0.5, 1, 2.75, 5 

5.3.1 

Constant speed across arcs (mph) 5, 10, 20, 30, 40, 55, 70 5.3.2 
Variant speed across arcs (mph) Various speed profiles representing 

various traffic conditions 
5.3.2 

Cargo type(or dwell time) 
GVW (lbs) 

Farm, manufacturing, food, parcel 
16k, 30k, 45k 

5.3.3 

5.3.1 Effect of GVW and Weight Ratio 

This section tests the percentage changes of energy consumption and PM2.5 emissions for Routes 
B and C, respectively, from Route A by GVW and weight ratio (defined as payload/curb weight).  
For the same GVW, a larger weight ratio means a larger payload.  

Table 12 and Table 13 summarize the percentage changes.  As expected, Route C generally has 
higher energy and emissions savings from Route A than Route B.  For a given weight ratio, more 
savings are resulted for heavier GVW for both B and C.  For GVW greater than 16,000 lbs, larger 
weight ratios render more energy and emissions savings on both B and C; less than 16,000 lbs, 
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both B and C actually have worse energy and emissions performance than A.  Such a pattern can 
be explained by the similar pattern in the idling energy consumption and emissions shown in 
Figure 11.  In general, heavier vehicles with larger initial payloads can benefit more from the 
sustainable routing strategies which incorporate the effect of vehicle weight.   

Table 12 Effect of GVW and Weight Ratio: Percentage Change from Route A to B 

Percentage change 
(B-A)% 

GVW (lbs)/ 
Weight ratio 8,000 16,000 30,000 45,000 

Energy 
consumption 

0.5 0.17% -0.39% -0.54% -0.84% 
1 0.25% -0.30% -0.81% -1.35% 

2.75   -0.19% -1.60% -1.74% 
5     -2.10% -2.03% 

PM2.5 0.5 0.02% -0.51% -0.51% -0.75% 
1 0.04% -0.52% -0.71% -1.16% 

2.75   -0.49% -1.61% -1.53% 
5     -2.29% -1.80% 

 

Table 13 Effect of GVW and Weight Ratio: Percentage Change from Route A to C 

Percentage change 
(C-A)% 

GVW (lbs)/ 
Weight ratio 8,000 16,000 30,000 45,000 

Energy 
consumption 

0.5 5.83% 2.68% 0.14% -2.12% 
1 6.48% 3.41% -2.64% -4.95% 

2.75   7.10% -3.90% -9.67% 
5     -1.25% -9.69% 

PM2.5 0.5 4.69% 1.55% 0.41% -1.25% 
1 4.78% 1.52% -3.00% -4.09% 

2.75   3.06% -6.85% -10.26% 
5     -6.05% -12.10% 

5.3.2  Effect of Speed 

(I) Constant Speed Across Arcs 

In this section, vehicle speed is assumed constant across all arcs in the graph and its value varies 
from 5mph to 70 mph.  The percentage changes (B from A and C from A respectively) are shown 
in Figure 12.  The trends are similar in both cases.  That is, increasing energy consumption savings 
are gained when speed goes up from 5 mph till around 20 to 30 mph; then the savings drop slightly 
until around 40mph and go up again afterwards.  This seems to indicate that, road traffic being 
equally good or bad, more energy savings can be expected on congested urban roadways as well 
as on highways with the new sustainable routing strategies.  PM2.5 emissions savings display the 
similar trend to that of energy consumption at lower speed (between 5 and 30mph) but then 
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continuously decrease at higher speeds.  These findings suggest that the optimal routing speeds for 
minimizing PM2.5 emissions and energy consumption may be different. 

 

 

Figure 12 Sensitivity on Speed Bin 

(II) Variant Speed Across Arcs 

Table 14 defines three speed profiles where different traffic conditions (congested versus 
uncongested, highways versus urban arterials) could be encountered during the vehicle's journey.  
Table 15 summarizes the percentage change results between Routes B and A and Routes C and A.   

In Profile 1, Routes A and B have the exact same arc speeds but in the reverse directions - recall 
that Route B is in the reverse visiting order of Route A; and Route C has a very low speed arc (3,0), 
which has the longest travel distance than any other arcs in Route A, B, or C.  As a result, Route 
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In Profile 2, three of the four arcs in Route A have very low speeds (congested); Route B has 
considerably much higher speeds (highway speeds) than those in Route A and the heaviest arc in 
Route B (0,2) has the highest speed among all arcs; Route C also has better speed performance 
than Route A albeit not as high speeds as Route B.  What we see now is that both Routes B and C 
display significant savings in energy and PM2.5 emissions over Route A.  

In Profile 3, now Route A has much higher speeds than Route B and arc speeds on Route C are 
comparable to those on Route A.  As a result, Route B has the worst energy and emissions 
performance among the three routes and Route C also has higher energy consumption and 
emissions than Route A likely due to the low speed on the longest arc (3,0).   

To summarize, the one thing that is clear in this analysis is that speed greatly impacts energy 
consumption and emissions and low speeds seem to have the greater impact, causing higher energy 
consumption and emissions.  

Table 14 Variant Speed Profiles 

Route link 
Speed profile (mph) 

Profile 1 Profile 2 Profile 3 
A (0,1) 32 3 73 
A (1,3) 14 5 49 
A (3,2) 68 39 60 
A (2,0) 73 7 34 
B (0,2) 73 61 32 
B (2,3) 68 61 62 
B (3,1) 14 54 6 
B (1,0) 32 11 10 
C (0,1) 32 3 73 
C (1,2) 33 49 13 
C (2,3) 68 61 62 
C (3,0) 8 39 29 

 
Table 15 Sensitivity of Speed 

 
Speed profile 

Percentage change B-A Percentage change C-A 
Energy PM2.5 Energy PM2.5 

Profile 1 -2.35% -4.71% 38.63% 43.15% 
Profile 2 -65.82% -71.52% -50.21% -53.58% 
Profile 3 116.24% 157.49% 16.86% 22.98% 
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5.3.3 Effect of Cargo Type (or Dwell Time) 

As described in section 5.1.3, dwell time is a linear function of the drop-off/ pickup cargo weight 
at the customer locations for different cargo types.  The cargo unit service times (×103lbs/hr), i.e., 
the coefficients in the linear models Eq. 34-37, vary between from 0.01(farm products) to 0.36 
(parcels).  Using the cargo unit service time for food and beauty products as the baseline, a term 
called cargo service ratio is introduced to measure the cargo unit service time ratio between a 
specified type of cargo and the baseline cargo type.  Cargo service ratio reflects the relative 
loading/unloading speed, which is affected by the cargo characteristics such as packaging method 
and value-to-weight ratio.  As such, farm products have a cargo service ratio of 0.05, manufactured 
goods 0.51, and parcels 1.77.  In other words, parcels have the longest unit service time among the 
four cargo types considered and farm products have the least unit service time.   

Table 16 shows the following results for Route C: percent idling emissions of the total PM2.5 
emissions, and the percentage changes of energy consumption and PM2.5 emissions from route A.  
By varying the GVW from 16000 to 45000 lbs while keeping the weight ratio (Payload-to-curb-
weight ratio) constant at 2.75, it represents the different demand levels are served.   

As expected, the higher the cargo service time the higher the idling emissions in percentage share.  
Both the energy and PM2.5 emissions savings on Route C go down very slightly from farm products 
to parcels in an ascending order of cargo service ratio.  But overall because both the idling 
emissions and energy consumptions account for a very small portion of the total quantities as 
already discussed earlier, the effect of cargo type (or dwell time) is very small (to the second 
decimal point in the percentage changes).   

Table 16 Effect of Cargo Type 

  
Cargo type 

  
GVW 

  
Weight 
ratio 

  
Cargo 
service 
ratio  

% node idling 
emissions  

percentage change 
from A: C-A 

Energy PM2.5 energy PM2.5 
Farm 16000 2.75 0.05 0.17% 0.19% 7.11% 3.07% 
Farm 30000 2.75 0.05 0.18% 0.20% -3.92% -6.88% 
Farm 45000 2.75 0.05 0.18% 0.21% -9.72% -10.32% 
Manufactured 16000 2.75 0.51 0.29% 0.34% 7.10% 3.06% 
Manufactured 30000 2.75 0.51 0.39% 0.45% -3.91% -6.86% 
Manufactured 45000 2.75 0.51 0.49% 0.56% -9.69% -10.29% 
Food 16000 2.75 1 0.29% 0.34% 7.10% 3.06% 
Food 30000 2.75 1 0.49% 0.57% -3.92% -6.85% 
Food 45000 2.75 1 0.69% 0.80% -9.67% -10.26% 
Parcels 16000 2.75 1.77 0.45% 0.52% 7.09% 3.06% 
Parcels 30000 2.75 1.77 0.80% 0.94% -3.89% -6.83% 
Parcels 45000 2.75 1.77 1.15% 1.34% -9.63% -10.21% 
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5.4 Conclusions 

Using a numerical example, this study has demonstrated the noticeable (joint) effects of vehicle 
payload, vehicle speed, and dwell time on urban commercial vehicle emissions and energy 
consumption. For example, heavier vehicles with larger initial payloads can benefit more from the 
sustainable routing strategies which incorporate the effect of vehicle weight, and low speeds have 
the greater impact than high speeds, causing higher energy consumption and emissions. The 
analysis results have indicated that the vehicle payload and speed could affect the visiting order of 
a distribution tour if minimizing the energy consumption or emissions is the objective. Idling 
energy consumption/emissions at stops, although considerably low compared to on-road energy 
consumption/emissions, may not be ignored especially in congested urban areas where customer 
density is high with large drop-off/ pick-up cargo weights and other special requirements are in 
place at the customer's (e.g., engine on to operate the refrigerator).  

As an ongoing research effort, this research team is currently working on the formulation of a new 
kind of sustainable CVRP problem which considers energy consumption /emissions as a function 
of, in addition to vehicle speed, vehicle weight (or payload) on links/arcs and nodes as well as 
vehicle dwell time. In future research, other variations such as time window constraint and loading 
activities at the customers during the same route (which is also related to the capacity constraint) 
need to be incorporated.  It is also necessary to test the new routing algorithms on selected real-
world goods distribution cases based on real-world data. 
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